PANDUAN PEMODELAN KINERJA DAERAH ALIRAN SUNGAI MENGGUNAKAN GENRIVER

Lisa Tanika, Betha Lusiana, Erwidodo, Henri Perkasa

World Agroforestry (ICRAF)

PANDUAN PEMODELAN KINERJA DAERAH ALIRAN SUNGAI MENGGUNAKAN GENRIVER

Lisa Tanika, Betha Lusiana, Erwidodo, Henri Perkasa

World Agroforestry (ICRAF)

Sitasi

Tanika L, Lusiana B, Erwidodo, Perkasa H. 2022. *Panduan Pemodelan Kinerja Daerah Aliran Sungai Menggunakan GenRiver*. Bogor, Indonesia: World Agroforestry (ICRAF) Program Indonesia.

Ketentuan dan Hak Cipta

World Agroforestry (ICRAF) memegang hak cipta atas publikasi dan halaman webnya, namun memperbanyak untuk tujuan non-komersial dengan tanpa mengubah isi yang terkandung di dalamnya diperbolehkan. Pencantuman referensi diharuskan untuk semua pengutipan dan perbanyakan tulisan dari buku ini. Pengutipan informasi yang menjadi hak cipta pihak lain tersebut harus dicantumkan sesuai ketentuan. Link situs yang ICRAF sediakan memiliki kebijakan tertentu yang harus dihormati. ICRAF menjaga database pengguna meskipun informasi ini tidak disebarluaskan dan hanya digunakan untuk mengukur kegunaan informasi tersebut.

Informasi yang diberikan ICRAF, sepengetahuan kami akurat, namun kami tidak memberikan jaminan dan tidak bertanggung jawab apabila timbul kerugian akibat penggunaan informasi tersebut. Tanpa pembatasan, silakan menambah link ke situs kami www.worldagroforestry.org pada situs anda atau publikasi.

World Agroforestry (ICRAF)

Program Indonesia

JI. CIFOR, Situ Gede, Sindang Barang Bogor 16115 [PO Box 161 Bogor 16001] Indonesia Tel: +(62) 251 8625 415 ; Fax: +(62) 251 8625416 Email: icrafindonesia@cgiar.org www.worldagroforestry.org/country/Indonesia www.worldagroforestry.org/agroforestry-world

Tata Letak: Muhammad Azizy

2022

PENGANTAR

Panduan ini disusun untuk membantu pengguna (*users*) menggunakan model GenRiver khususnya untuk aplikasi di DAS Citarum Hulu. Model GenRiver yang digunakan sebagai contoh secara khusus telah dikalibrasi menggunakan data-data DAS Citarum Hulu. Dengan menggunakan panduan ini, pengguna model dapat belajar untuk:

- 1
- Menginstall file-file yang dapat digunakan untuk menjalankan model
- Menjalankan model GenRiver dan memahami keluaran yang dihasilkan
- Memahami data hidroklimatologi yang diperlukan sebagai input model GenRiver dan proses uji kualitas data yang perlu dilakukan

Mengetahui proses analisa data berdasarkan keluaran yang dihasilkan GenRiver

Mengetahui cara mengubah input parameter untuk menjalankan skenario intervensi di DAS Citarum Hulu

Dengan memahami langkah-langkah di atas, pengguna model bisa memperoleh gambaran proses yang perlu dilakukan untuk menerapkan model di DAS yang baru termasuk data-data yang diperlukan.

Persyaratan penting bagi pengguna agar dapat menggunakan model GenRiver dengan baik adalah tidak mudah putus asa. Berani melakukan kesalahan, karena cara tercepat untuk piawai dalam menggunakan model adalah belajar dari kesalahan. Pengguna juga dapat belajar dari berbagai publikasi yang berisi hasil-hasil studi yang menggunakan model Genriver, tercantum di bagian akhir panduan dan dapat diunduh secara bebas di ICRAF website.

DAFTAR ISI

PENGAN	NTAR iii
INFORM	ASI UMUM1
1.1.	OVERVIEW1
1.2.	MINIMUM REQUIREMENT
1.3.	KOMPONEN MODEL GENRIVER
INPUT	
2.1.	CURAH HUJAN (RAIN DATA)
2.2.	EVAPORASI (EVAPORATION)
2.3.	DEBIT (RIVER FLOW DATA)
2.4.	INFORMASI DAS (SUBCATCHMENT INFORMATION)
2.5.	TUTUPAN LAHAN (LAND COVER DATA)
2.6.	JENIS TANAH (SOIL PROPERTIES)10
2.7.	KEMIRINGAN/ELEVASI (SLOPE)
2.8.	KEGIATAN KONSERVASI (CONSERVATION ACTION)
2.9.	RIPARIAN AREA14
MENJAI	LANKAN GENRIVER MODEL15
3.1.	IMPORT DATA INPUT
3.2.	MENJALANKAN MODEL GENRIVER16
3.3.	EXPORT DATA OUTPUT
PARAM	ETERISASI, KALIBRASI DAN VALIDASI19
4.1.	PARAMETERISASI & KALIBRASI MODEL
4.2.	VALIDASI MODEL
ANALIS	IS HASIL

DAFTAR TABEL

Tabel 1.	Parameter-parameter yang biasa dilakukan parameterisasi dan kalibrasi
Tabel 2.	Indikator statistika untuk proses validasi dan evaluasi model
Tabel 3.	Contoh kriteria dan indikator fungsi hidrologi yang dapat digunakan untuk mengintepretasikan hasil simulasi Model GenRiver

DAFTAR GAMBAR

Gambar 1.	Inti model GenRiver yang merupakan gabungan dari neraca air di tingkat sub-DAS menjadi tingkat DAS	.1
Gambar 2.	Tahapan pemodelan GenRiver model	2
Gambar 3.	Tampilan utama model Genriver di STELLA 9.1.4	3
Gambar 4.	Tampilan isi 'Input Section' dalam STELLA (Kiri) dan 'Run & Output Section' (kanan)	4
Gambar 5.	Tampilan isi 'Model Structure' dalam STELLA	4
Gambar 6.	Menu Excel Options	5
Gambar 7.	Tampilan menu Macro Settings	5
Gambar 8.	Tampilan isian data curah hujan harian	6
Gambar 9.	Input data evaporasi bulanan	6
Gambar 10.	Input data evaporasi harian	7
Gambar 11.	Input data debit harian	7
Gambar 12.	Input data informasi Sub-DAS	8
Gambar 13.	Tampilan utama halaman data tutupan lahan	8
Gambar 14.	Input data untuk tahun transisi tutupan lahan	9
Gambar 15.	Input data tipe tutupan lahan dan atributnya	9
Gambar 16.	Input data fraksi perubahan tutupan lahan1	0
Gambar 17.	Tampilan utama halaman Data Tanah1	0
Gambar 18.	Input data fisik dan kimia tanah	11
Gambar 19.	Input data area tanah dan kedalaman tanah	11
Gambar 20.	Input data Slope (%) untuk masing-masing tipe tutupan lahan di masing-masing Sub-DAS1	2

Gambar 21.	Input data fraksi luasan area untuk masing-masing kelas slope	. 13
Gambar 22.	Input data bobot kegiatan konservasi untuk masing-masing tipe tutupan lahan di masing-masing sub-DAS	. 14
Gambar 23.	Input data untuk fraksi tree-based system in the riparian area	. 14
Gambar 24.	. Tampilan menu import data dalam GenRiver.STM	. 15
Gambar 25.	Tampilan halaman Run & Output Section dalam GenRiver.STM	. 16
Gambar 26.	Tabel 'Model Performance & Watershed Indicator' hasil simulasi model GenRiver	. 17
Gambar 27.	Tampilan input section yang berisi berbagai input dalam bentuk angka tunggal (single value) yang mungkin diperlukan dalam proses parameterisasi dan kalibrasi	20
Gambar 28.	Contoh double mass-curve (Contoh kasus DAS Citarum)	. 21
Gambar 29.	Perubahan aliran permukaan, aliran bawah permukaan dan aliran dasar sebagai hasil perubahan tutupan lahan (contoh kasus DAS Citarum)	24
Gambar 30.	Perubahan erosi hasil simulasi model GenRiver (contoh kasus DAS Citarum)	24

INFORMASI UMUM

1.1. OVERVIEW

GenRiver adalah suatu model hidrologi sederhana yang didasarkan pada persamaan keseimbangan neraca air yang terdiri dari curah hujan/presipitasi (P), evapotranspirasi (E), debit air (Q) dan air yang disimpan di dalam tanah (ΔS)(Persamaan 1).

 $P = Q + E + \Delta S$

[1]

Lebih lanjut, debit air dapat dibagi menjadi 3 komponen yaitu aliran permukaan (surface flow/runoff)(Qs), aliran bawah permukaan (sub-surface flow)(Qss) dan aliran bawah tanah (baseflow)(Qb), sehingga Persamaan 1 dapat diturunkan menjadi Persamaan 2.

 $P = (Qs + Qss + Qb) + E + \Delta S$

[2]

Inti dari model GenRiver adalah neraca air pada tingkat plot yang dipengaruhi oleh curah hujan, jenis tutupan lahan dan karakter tanah, yang selanjutnya dibawa ke tingkat bentang lahan (landscape) dengan memasukkan jaringan sungai (Gambar 1). Jaringan sungai ini akan menentukan jarak suatu plot (atau sub-DAS) ke muara akhir, yang selanjutnya akan memengaruhi waktu tempuh/aliran air dari lokasi tersebut ke muara akhir.

Gambar 1. Inti model GenRiver yang merupakan gabungan dari neraca air di tingkat sub-DAS menjadi tingkat DAS

Terdapat tiga tahapan dalam melakukan pemodelan hidrologi menggunakan model GenRiver untuk memenuhi tujuan penelitian ini (Gambar 2).

- Persiapan input model GenRiver. Tahap ini merupakan persiapan semua input yang diperlukan untuk mensimulasikan model GenRiver+ termasuk proses pengumpulan dan analisis data. Penambahan input yang signifikan dalam model GenRiver+ ini adalah pengolahan data slope dan perubahan tutupan lahan di riparian area di masing-masing sub-DAS.
- Pemodelan hidrologi menggunakan Model GenRiver. Tahap pemodelan GenRiverini dimulai dengan penambahan modul erosi dan sedimentasi. Selanjutnya diikuti dengan tahap kalibrasi dan validasi model. Kalibrasi merupakan suatu proses penyesuaian beberapa nilai parameter (parameterisasi) dalam model dengan tujuan agar hasil simulasi menyerupai kondisi DAS sebenarnya (Kobolt 2008). Nilai-nilai parameter yang disesuaikan pada umumnya merupakan parameter yang sulit untuk dilakukan pengukuran seperti tingkat infiltrasi, kapasitas maksimum tanah, kekasaran sungai, dan lain-lain. Validasi merupakan proses perbandingan antara debit hasil simulasi model dengan debit sebenarnya atau pengukuran di lapangan. Setelah tahap kalibrasi dan validasi selesai, tahap selanjutnya adalah mensimulasikan berbagai skenario perubahan tutupan lahan untuk melihat dampaknya terhadap neraca air.

3 Interpretasi model. Tahap ini merupakan tahap akhir, di mana kita membandingkan hasil simulasi berbagai skenario perubahan tutupan lahan dan iklim. Keluaran dari tahap ini dapat menjadi bahan pertimbangan dalam membuat rencana pengelolaan DAS di masa depan.

Gambar 2. Tahapan pemodelan GenRiver model

1.2. MINIMUM REQUIREMENT

Model GenRiver dikembangkan menggunakan platform STELLA, dengan sebagian besar input disimpan dalam MS. Excel. Saat ini versi GenRiver menggunakan STELLA 9.1.4, yang memungkinkan untuk melakukan import-export data dari MS Excel ke STELLA. Kebutuhan minimum yang diperlukan untuk menjalankan model GenRiver adalah sebagai berikut:

Windows	Macintosh
233 MHz Pentium	120 MHz PowerPC
Microsoft Windows [™] 2000/XP (English Version)	Any Intel-based Mac Mac OS 10.2.8 or higher (English Version)
128 MB RAM	128 MB RAM
70 MB hard disk space	70 MB hard disk space
16-bit color	Thousands of colors

1.3. KOMPONEN MODEL GENRIVER

Tampilan utama model GenRiver dalam STELLA berisi penjelasan singkat tentang GenRiver, tombol input yang digunakan untuk proses paramerisasi (To input Menu), tombol untuk menjalankan model GenRiver (To Run & Output), tombol untuk masuk ke dalam struktur model (Model Structure) dan Tombol untuk melihat versi update (Version update)(Gambar 3-5).

Gambar 3. Tampilan utama model Genriver di STELLA 9.1.4

INPUT SECTION To Main Menv To Run & Output Model Sector	RUN & OUTPUT SECTION	Oct or Gray Table of Selan Law for Balance water Table Selar Table
Soil and Plant Water Dynamic Cattle	Consumer service of an interview of a service of a s	Complete Broaddan Latest@PP

Gambar 4. Tampilan isi 'Input Section' dalam STELLA (Kiri) dan 'Run & Output Section' (kanan)

Gambar 5. Tampilan isi 'Model Structure' dalam STELLA

Sebagian besar input model GenRiver berupa data seri harian yang disimpan di dalam MS. Excel. Untuk memudahkan pengguna dalam memasukkan data-data yang diperlukan oleh Model GenRiver maka MS. Excel dilengkapi oleh macro. Untuk mengaktifkan macro dalam MS Excel dapat mengikuti langkah-langkah berikut:

Buka GenRiver.xls

Klik 'File' kemudian pilih 'Options'

Pilih Trust Centre (Gambar 6)

Gambar 6. Menu Excel Options

Pilih Trust Centre Setting

Pilih Macro Settings (Gambar 7)

Gambar 7. Tampilan menu Macro Settings

Pilih Enable all macros

Input Model GenRiver dalam MS. Excel terdiri dari curah hujan, evaporasi,

2.1. CURAH HUJAN (RAIN DATA)

Data curah hujan yang diperlukan dalam model GenRiver adalah curah hujan harian yang terdiri dari 365 hari (untuk tahun kabisat, tanggal 29 februari dihilangkan). Dalam format MS Excel, data curah hujan harian yang diperlukan maksimal 32 tahun (Gambar 8). Jika ingin menjalankan lebih dari 32 tahun, maka dapat proses pemodelan dapat dibagi menjadi 2 bagian namun dengan parameterisasi yang sama. Saat memasukkan data curah hujan, perlu dipastikan bahwa semua data dalam bentuk angka (number).

Gambar 8. Tampilan isian data curah hujan harian

2.2. EVAPORASI (EVAPORATION)

Data evaporasi yang dapat dimasukkan dalam model GenRiver dapat berupa data evaporasi harian atau data bulanan (Gambar 9 dan 10), sesuai dengan ketersediaan data yang di lapangan. Data evaporasi bulanan dapat diturunkan dari data suhu yang kemudian dihitung menggunakan persamaan Thornwaite.

Gambar 9. Input data evaporasi bulanan

FRE H	CAE P	NERT PAG	ELAYOUT FORMU	LAS DATA	REVEW VEW AD	O-INS Nitro Pro I	N/TRO PRO			A Microsoft account
North Contraction	t py = mat Painter ed	Aul B J U	- 10 - 1 A - 1		E + B Wap Test	Number er + \$ = % +	Sil 23 Condition	al Format as Cell - Table - Styles - Styles	Inset Delete Format	∑ Autrium * 27 M Fra- Cear* Solt & Find & Fotors
-	-1.1	~								
		~ Y]	Ok. Herchtrop							
				-						
	Pho II	-	1.1. F		e de l	04 D*	80	01 01		
	Daity	Potent	iai Evapotra	inspiratio	n, mm day '					
		Turne	Called to undate all land	Annual Associations	BACK To Mor	aly area to	I and County Day			
		-344	Care of shore as most	total baraness	Potential	DAL N 10	Cana Cover Da			
1	Days	Year 1-4	Year 5 - 8 Yea	r 9 - 12 Year 1	3-16 Year 17-20 8	tear 21 - 24 Year 25 -	28 Year 29 - 32	1		
1 1		2012 2015	2019-2019	0 1		0 0	0	1		
	2	4.5	2.4							
	3	2.5	27							
	4	5.2	2.5							
		2.8	22							
		4.5								
	1	25	55							
		22								
	-									
		22								
	82		14							
	-		2.6							
(I	5.6		2.5							
	85	47	2.8							
	56	4.5	27							
1	17	4.5	2.4							
1	58	4.2	2.8							
1 1	19	3.5	27							
1 1	20	4.0	2.6							
	PEAD	ME Raid	ata RiverFlowDa	ta SubCath	to LandCoverData	Sinneh/oppend	and I say the	Out SolProper	tes LINKTOSTELL	

Gambar 10. Input data evaporasi harian

2.3. DEBIT (RIVER FLOW DATA)

Data debit harian ini diperlukan untuk proses kalibrasi dan validasi model. Format data input debit ini serupa dengan format data input curah hujan harian dan evaporasi harian. Hal yang perlu diperhatikan dalam pengisian data debit harian ini adalah tahun yang ada di bagian atas kolom. Tahun ini akan mengikuti ketersediaan data curah hujan. Oleh karena itu jika pada tahun tersebut tidak terdapat data debit makan kolom tersebut data dikosongkan.

icrosoft Exc	cel - GenRiver										
the part ye	ow proof Pornat	Joos Dita M	gnoow tels Add	lar PD ⁴					Type a over	an for hep 💌	- 0
					Level .	* 20 *		= 10 = x . 1	1 1 10 10 10	·	
									a salar aria		
*****	10 0 1 1 10	Web area	· · · · · · · · · · · · · · · · · · ·	1 X0% • (3)							
			12 2 2 4 L	A & D at P	* B 22 12 12	1 1 1 2 2 1	5.				
0 10 10 0	to Q M ad TV		Ry Routes								
541	- 4										
	H	12	1			6					-
~	0	~	-							n	
Rive Station Series Re	er Flow	Data, HEPP (415 km 1976-2007	m ² sec				BACK TO RE	AD ME			
Days	Year 1 - 4 1976-1979	Year 5 - 8 1980-1983	Year 9 - 12 1964-1967	Year 13 - 16 1968-1991	Year 17 - 20 1992-1995	Year 21 - 24 1996-1999	Year 25- 29 2000-2003	Year 29 - 32 2004-2007			
1	12.2	17.0	28.4	28.1	35.7	12.3	0.00	0.00			
2	13.0	18.0	31.1	19.2	28.4	13.0	0.00	0.00			
3	13.0	20.4	27.9	28.5	27.2	23.0	0.00	0.00			
4	14.5	28.5	21.8	54.4	27.2	17.5	0.00	0.00			
							0.00				
2	12.3	201	10.0	20.0		10.0	0.00				
:	10.0	20.2	10.0	47.8	111	10.0	0.00	100			
	12.0	020	20.0		22	22.4	0.00				
	117	212			21	24.5					
	10.1	21.2	20.4	00 1	28.5	124	0.00	COC			
19	22.2	25.4	20.6	29.5	10.0	17.0	0.00	COC			
11	250	30.4	34.4	180	24.1	17.0	0.00	C.OC			
12	210	328	28.0	101.4	25.4	17.5	0.00	0.00			
13	12.5	029	21.7	102.3	20.1	210	0.00	0.00			
14	11.3	47.0	28.3	47.5	41	237	0.00	C.O.			
						127	0.00	1.00			
12	17.8	49.0	32.0	62.6	51 C	10.0	0.00				
15	17.9	40.0	22.0	49.5	29.2	21.6	0.03	0.00			
15	17.9 13.5 24.3	40.0 62.6	32 0 37 1 40 2	495	20.2 23.4	21.6 22.9	0.03	000			
15 18 17 10	17.8 13.5 24.3 13.9	40.0 40.9 62.6 67.1	30.0 37.1 40.2 44.2	495 475 537	29.2 23.4 20.2	21.5 22.9 42.9	0.00 0.00 0.00	C 00 C 00 C 00			
15 17 10 19	17.9 13.5 24.3 13.9 21.1	40.0 40.0 62.6 57.1 57.1	22 0 37 1 40 2 44 2 36 7	47.5 47.5 53.7 80.7	29.2 29.4 20.2 18.4	21.5 22.9 42.9 35.5	0.03 0.03 0.03 0.03	C 0C C 0C C 0C C 0C			
15 17 19 20	17.9 13.5 29.3 13.9 21.1 29.0	48.0 40.9 62.6 57.1 57.1 47.0	200 371 402 442 367 362	42 C 49 S 47 E 53 7 40 F 52 S	23.2 23.4 30.2 18.4 17.4	21.5 22.9 42.9 35.5 25.0	0.03 0.03 0.03 0.03 0.03 0.03	C 0C C 0C C 0C C 0C C 0C			

Gambar 11. Input data debit harian

2.4. INFORMASI DAS (SUBCATCHMENT INFORMATION)

Informasi DAS atau Sub-DAS yang diperlukan oleh model GenRiver terdiri dari 2 parameter yaitu: (a) luas area per-sub-DAS dan (b) Jarak masing-masing sub-DAS ke muara akhir (final outlet) (Gambar 12). Kedua input parameter tersebut dihitung atau ditentukan menggunakan GIS.

🗮 🔏 Cut	Arial		10 - 0	. =	2.		Inter Text	1	Inneral			7) 📑		FILL A		
te or Format Painter	BI	¥ • 🖽	- 0-1	<u>,</u> ≡:	= = +e	# 8N	Aerge & Cent	н • С	\$ • %	,	* 86 #	Condi Forma	itional tting *	Format as	Cell Styles -	EE Ins
Clipboard	G.	Font		15		Alignment		6	Nu	mber		6		Styles	signas	
6 - :	× v	f _x														
A	В	С	D	E	F	G	н	1		J	K		L	M		1
	ment	t Area	and soil pa	Routi	ng Dis	stance	e			в	ACK T	O MAIN	MÊNU			
Subcatch Type Ctri+t to up	date all su	t Area	and soil p	Routi	ng Dis	stance	2			B	ACK T	O MAIN	MENU			
Sub-catchment	Area, km ²	Area fraction	and soil pa	Routi arameters Obs1	Routing	Distance Obs3	to (km): Obs4	Obs5	0	B	ACK T	O MAIN I	MENU	Ĩ		
Subcatch Type Ctri+t to up Sub-catchment Cirasea	Area, km ² 375.07	Area fraction 0.18	and soil pa	Routi arameters Obs1	Routing Obs2 -1.00	Distance Obs3	to (km): Obs4 -1.00	Obs5	0	B bs6	ACK T	O MAIN I	MENU			
Subcatch Type Ctri+t to up Sub-catchment Cirasea Citarik	Area, km ² 375.07 458.51	Area fraction	and soil pa	Obs1	Routing Obs2 -1.00 -1.00	Distance Obs3 -1.00 -1.00	to (km): Obs4 -1.00 -1.00	Obs5 -1.00 -1.00	0	B 555 .00	ACK	O MAIN I	MENU			
Subcatch Type Ctri+t to up Sub-catchment Citrasea Citarik Cisangkuy	Area, km ² 375.07 458.51 305.14	Area fraction 0.18 0.22 0.14	Final Outlet 88.50 78.00 78.30	Obs1 -1.00 -1.00 -1.00	Routing Obs2 -1.00 -1.00 -1.00	Distance Obs3 -1.00 -1.00 -1.00	to (km): Obs4 -1.00 -1.00 -1.00	Obs5 -1.00 -1.00 -1.00	0	B 00 00	ACK T	O MAIN	MENU			
Subcatch Type Ctri+t to up Sub-catchment Cirasea Citarik Cisangkuy Cikapundung	Area, km ² 375.07 458.51 305.14 399.68	Area fraction 0.18 0.22 0.14 0.19	and soil pa Final Outlet 88.50 78.00 78.30 72.30	Obs1 -1.00 -	Routing Obs2 -1.00 -1.00 -1.00 -1.00	Distance Obs3 -1.00 -1.00 -1.00 -1.00	to (km): Obs4 -1.00 -1.00 -1.00 -1.00	Obs5 -1.00 -1.00 -1.00 -1.00	0	00 00 00	ACK	O MAIN	MENU			
Subcatch Type Ctri+t to up Sub-catchment Cirasea Citarik Cisangkay Cikapundung Ciwidey	Area, km ² 375.07 458.51 305.14 399.68 270.46	Area fraction 0.18 0.22 0.14 0.19 0.13	and soil pa and soil pa Final Outlet 88.50 78.00 78.30 72.30 59.80	Obs1 -100 -100 -100 -100 -100	Routing Obs2 -1.00 -1.00 -1.00 -1.00 -1.00	Distance Obs3 -1.00 -1.00 -1.00 -1.00 -1.00	to (km): Obs4 -1.00 -1.00 -1.00 -1.00 -1.00	Obs5 -1.00 -1.00 -1.00 -1.00 -1.00	0	00 00 00 00	ACK T	O MAIN	MENU			

Gambar 12. Input data informasi Sub-DAS

2.5. TUTUPAN LAHAN (LAND COVER DATA)

Input data tutupan lahan yang diperlukan oleh model GenRiver terdiri dari beberapa bagian, yaitu (a) Year of Land Cover Change, (b) Land Cover type and properties dan (c) Fraction of land cover change (Gambar 13).

Gambar 13. Tampilan utama halaman data tutupan lahan

a. Tahun transisi perubahan penggunaan lahan (Year of land Cover Change)

Model GenRiver memungkinkan untuk memasukkan beberapa tahun perubahan tutupan lahan untuk melihat dampak transisi perubahan tutupan lahan terhadap neraca air (Gambar 14). Hal yang perlu diperhatikan disini adalah kesesuaian tahun awal transisi tutupan lahan (start of simulation) harus sama dengan tahun data curah hujan.

BACK TO MAIN MENU

Year of Land Cover Change

Period of transition	Year	Interval
At start of simulation	2012	0
At first transition point	2015	3
At second transition point	2018	6
At end of simulation	2019	7

Gambar 14. Input data untuk tahun transisi tutupan lahan

b. Tipe Tutupan lahan dan Atributnya (Land Cover Type and Properties)

Model GenRiver memungkinkan untuk memasukkan tipe-tipe tutupan lahan sesuai kondisi dan karakteristik DAS. Setelah menentukan tipe-tipe tutupan lahan yang akan disimulasikan dalam Model GenRiver, maka bagian atribut (atau properties) dari tutupan lahan yang perlu disesuaikan antara lain: (1) Potential interception, (2) Relative drought threshold, (3) BD/BDRef dan (4) Multiplier daily potential evapotranspiration. Cara untuk menentukan nilai-nilai tersebut dapat dilihat pada buku Manual GenRiver (Van Noordwijk et al 2011).

Land cover ty	pes ar	nd the	ir prop	perti	es	BAC	E TO MAIN	MENU	Type Call-	to update	all land cov	er paramets				
The GenRiver model wa <i>hour</i> steps in the wate influences infiltration (o (here expressed as the soil water content whe Distinctions between la availability of data on la data include a 'no data to apply to these pixels The land cover types in Please fill in all the blue	s set up r cycle: i fraction re evapo nd cover and cover catego as well. STELLA	to compa netercepti generatio of the po transpirat types for r fraction ry (cloud are not a ename th	re the imp on by the n as its co- tential ET son is affer r any simu s, and imp s and clou sutomartic e land cos	canopy ompleme per mo roted. dation si oortance d-shado cally upd	land cov , impact nt), sea nth), and hould be of the li nw) no lated whi s and pro	er chang on the to sonal pat d a droug based or and cove rmally th en you cl ovide the	e on hyd opsoil str tern of w ht thresh n the prin r type in e fractio hange th four typ	trology. 1 ucture (il ater use sold that hary rese the cato ns of lan e names e of data	these imp (b)/80vef) indicater arch que thment a d cover e here. Ple (estima	pacts are) that s the rela stion, th rea. Mos elsewhere rase use tes) nee	e e t spatial e are asp Array Edi ded	n umed tor to do	this.			
Land cover type	Potential Intercep-	Relative	BOBOW				M	utiplier of	Daily Poter	etial Evapo	transpirat	ion				Yearly
	tion (mm	Threshold		Jan	Feb	Mar	Apr	May	Jun	Jul .	Aug	Sep	Oct	Nor	Dec	
Undisturbed forest	4.00	0.40	0.70	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	1195
Logged over forest-high de	3.50	0.45	0.80	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	1121
Logged over forest-low den	3.00	0.50	0.90	6.79	6.70	0.70	0.70	0.70	0.70	0.75	6.70	8.70	0.79	0.70	0.70	1046
Mixed garden	3.00	0.60	0.95	0.65	0.05	0.65	0.65	0.65	0.05	0.65	0.65	0.05	0.85	0.65	0.05	871
Coffee agroforest	1.00	0.55	1.08	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	247
Rubber monoculture	2.50	0.60	0.90	0.60	0.60	0.00	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.00	897
Oil paim monoculture	5.00	0.95	1.06	0.50	0.50	0.50	0.50	8.50	0.50	0.50	0.50	0.50	0.50	0.50	8.50	247
Teak plantation	3.00	0.60	1.10	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	1045

Gambar 15. Input data tipe tutupan lahan dan atributnya

c. Fraksi Perubahan Tutupan Lahan (Fraction of Land Cover Change)

Luasan area masing-masing tutupan lahan pada masing-masing tahun transisi perubahan tutupan lahan digambarkan dalam bentuk fraksi dengan nilai antara 0 - 1(luas area tutupan lahan dibagi luas area DAS atau Sub-DAS). Pengguna model mempunyai dua pilihan dalam mengisikan fraksi perubahan tutupan lahan, yaitu: uniform untuk semua sub-DAS atau dapat sesuai dengan kondisi masing-masing Sub-DAS. Hal yang perlu diperhatikan dalam pengisian fraksi perubahan tutupan lahan ini adalah nilai total untuk masing-masing sub-DAS adalah sama dengan 1. Jika nilai total diperoleh lebih atau kurang dari 1, maka proses persiapan data input tutupan lahan ini perlu diperiksa ulang.

Fraction of Land Cover Change

There are two options to initialize fraction of land cover of each subcatchment, it can be either uniform of all subcatchment (land cover identification = 1) or different for each subcathment. The different land cover for each subcatchment can be either generate from spatial data (land cover identification = 0) or using output data of FALLOW model (land cover identification = 2). To specify this option, fill in cell BS11

k (Mean) 18 2019 3 0.19 5 0.28
(Mean) 18 2019 13 0.19 16 0.28
18 2019 13 0.19 15 0.28
0.19 6 0.28
6 0.28
6 0.02
0.00
0.02
0.11
0.02
0.00
0.01
0.02
3 0.07
0.00
0.00
0.01
0.03
0.0

Gambar 16. Input data fraksi perubahan tutupan lahan

JENIS TANAH (SOIL PROPERTIES) 2.6.

Input data jenis tanah yang diperlukan oleh model GenRiver terdiri dari beberapa bagian, yaitu (a) Soil Properties dan (b) Soil Area and Depth (Gambar 17).

Soil Properties

This spreadsheet is built to help you to initialize :

Soil physical (bulk density and soil texture) and chemical (soil carbon) properties.
 Area of each soil type (10 groups of soil type).

- Soil depth of each soil type.

- This spreadsheet is also built to help you to estimate :
- Three phase of top and sub soil water content: field capacity, permanent wilting point and saturated water content
 per subcatchment and per year of landcover transition time.
- Plant available water, inaccessible water for plant and capacity of soilquick flow per subcatchment and per year of landcover transition time.

a. Soil Physical dan Chemical properties

Input data fisik dan kimia tanah berupa: (1) BD/BD ref, (2) Perhitungan kapasitas air tanah dan (3) informasi lebih lanjut tentang fisik dan kimia tanah (Gambar 18). Bagian ini sebagian besar berupa data referensi sehingga dapat menggunakan data default yang ada di dalam model. Namun demikian, bagi pengguna yang mempunyai pengetahuan atau kebutuhan lebih terkait kondisi fisik dan kimia tanah dapat melakukan perubahan/ penyesuaian pada halaman ini.

Soil Physical & Chemical Properties

BD/BDref of SubSoil per year of landcover transition time

Year of landcover transition time	BD/BDref
at start of simulation	1.15
at first transition point	1.15
at second transition point	1.15
at end of simulation	1.15

note : BD/BDref per year of transition time is generic value for all soil types and used to estimate three phase of sub soil water content per subcatchment per year of landcover transition time. Interested to see estimated soil water content, just click on "To Estimated Soil Water Content" button

Gambar 18. Input data fisik dan kimia tanah

b. Soil Area and Depth

Seperti input data fraksi perubahan tutupan lahan. Input untuk luas area masing-masing jenis tanah dalan sub-DAS juga dihitung dalam bentuk Fraksi dari luasan area sub-DAS, dengan nilai antara 0 - 1. Dalam halaman area jenis tanah disediakan berbagai jenis tanah yang ada, sehingga pengguna dapat langsung mengisikannya sesuai dengan jenis tanah yang ada di masing-masing sub-DAS.

Soil Area and Depth		Type Carl+	(ype Ctrint to update all subcatchment and soil parameters BACK TO MAIN MENU										
Sub- catchment	Histosols	Andisols	Aridisols	Entisols	Inceptisols	Mollisols	Oxisols	Spodosols	Ultisols	Vertisols	Check (should be 1)	The last three or two letters for another category	Soil Typ
Cirasea	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	1	ALE	Affects
Citarik	0.00	0.00	0.00	0.00	0.98	0.00	0.00	0.00	0.02	0.00	1	AND	Andisols
Cisangkuy	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	1	JD	Aridisola
Cikapundung	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	1	ENT	Entisols
Clwidey	0.00	0.00	0.00	0.00	0.93	0.00	0.00	0.00	0.07	0.00	1	IST	Histosol
Ciminyak	0.00	0.00	0.00	0.00	0.95	0.00	0.00	0.00	0.05	0.00	1	GEL	Gelisols
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	EPT	Inception
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	OLL	Mollisch
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	COX .	Oxisols
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	00	Spodos
11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	ULT	Ultisols
12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	ERT	Vertisch
13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	-	
14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0		
15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0		
16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0		

Gambar 19. Input data area tanah dan kedalaman tanah

2.7. KEMIRINGAN/ELEVASI (SLOPE)

Data input kemiringan (slope) dihitung dari data Digital Elevation Model (DEM) untuk masing-masing tutupan lahan di masing-masing Sub-DAS. Lebih lanjut, berdasarkan tingkat kemiringannya, kondisi wilayah dapat dibagi menjadi 3 kelas yaitu: rata (0-15%), landai (15- 30%) dan curam (>30%). Terdapat dua jenis input data yang terkait dengan slope, yaitu: (a) besaran nilai slope untuk masing-masing tipe tutupan lahan dan (b) fraksi luasan area untuk masing-masing kelas slope untuk masing-masing tipe tutupan lahan. Gambar 20 menunjukkan input data rata-rata besaran nilai slope (%) untuk masing-masing tipe tutupan lahan di masing-masing Sub-DAS, sedangkan Gambar 21 menunjukkan input data fraksi luasan area untuk masing-masing tipe kelas slope.

Landsover type		Cira	isea	
Landcover type	2012	2015	2018	2019
Undisturbed forest	47.96	0.00	0.00	0.00
Logged over forest-high densi	37.92	37.80	38.50	38.50
Logged over forest-low densit	46.64	36.95	44.44	44.44
Mixed garden	32.53	39.24	38.17	38.17
Coffee agroforest	31.14	38.21	34.40	34.40
Rubber monoculture	33.52	34.84	31.92	31.92
Dil palm monoculture	27.13	27.13	27.13	27.13
Teak plantation	32.60	29.62	29.06	29.06
Sengon plantation	32.88	37.12	39.57	39.57
Pinus plantation	47.70	41.33	46.86	46.86
Others timber plantation	35.37	40.94	44.99	44.99
Tea monoculture	39.50	38.96	37.30	37.30
Rice field	29.18	33.88	32.13	32.13
Other annual crop	40.65	39.33	39.72	39.72
Settlement	26.91	24.03	26.63	26.63
Shrub, grass and cleared land	28.59	28.70	25.89	25.89
Mining	0.00	0.00	17.05	17.05
Water body	16.82	15.89	15.89	15.89
0	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00

SLOPE (%)

Gambar 20. Input data Slope (%) untuk masing-masing tipe tutupan lahan di masing-masing Sub-DAS

YEAR 2012																		
			CLAN	FLAT					SURF	STOP					- 57	CEP.		
and Cover	Cirasea	Citarik	Cisanghuy	Cikapundi	Childry	Ciminyak	Cirasea	Clark	Cisangleuy	Aspender	Chuidey	Ciminyak	Cirasea	Citarik	Cisangkuy	Aspundur	Chuidey	Ciminga
And isturbed forest	0.06	0.05	0.21	0.12	0.11	0.06	0.24	0.24	0.33	0.32	0.39	0.24	0.70	0.72	0.46	0.55	0.50	0.70
logged over forest-high density	0.30	0.14	0.50	0.14	0.15	0.10	0.36	0.31	0.26	0.30	0.35	0.15	0.63	0.56	0.64	0.56	0.51	0.67
ogged over forest-low density	0.11	0 10	0.14	0.17	0.36	0.06	0.35	0.31	0.33	0.37	0.34	0.23	0.64	0.58	0.52	0.57	0.46	0.77
Mix garden	0.39	0.31	0.26	0.42	0.17	0.16	0.34	0.39	0.34	0.33	0.34	0.35	0.45	0.31	0.36	0.26	0.48	0.4
Coffee agroforest	0.29		0.34	0.41			0.38	0.00	0.45	0.33	0.00	0.00	0.33		0.21	0.27		
lubber monoculture	0.11	0.08	0.06	0.31	0.05	0.36	0.35	0.24	0.24	0.35	0.11	0.59	0.54	0.64	0.70	0.35	0.77	0.25
bil palm monoculture	0.14	0.05			0.34		0.47	0.34	1.00	0.12	0.64	0.00	0.39	0.56		0.88		
teak plantation	0.14	0.43	0.26	0.31	0.45	0.10	0.37	0.14	0.45	0.36	0.34	0.24	0.48	0.41	0.29	0.32	0.21	0.64
lengon plantation	0.11	0.10	0.15	0.15	0.21	0.09	0.35	0.43	0.42	0.38	0.39	0.27	0.54	0.47	0.44	0.47	0.39	0.64
Pinus plantation	0.30	0.12	0.30	0.16	0.15	0.08	0.35	0.34	0.56	0.35	0.41	0.27	0.65	0.52	0.54	0.49	0.44	0.67
Others timber plantation	0.09	0.06	0.09	0.08	0.10	0.06	0.43	0.31	0.39	0.27	0.43	0.24	0.50	0.57	0.51	0.85	0.47	0.77
lea monoculture	0.30	0.18	0.42	0.13	0.24	0.10	0.31	0.34	0.40	0.35	0.41	0.26	0.39	0.45	0.18	0.56	0.35	0.64
tice field	6.77	0.81	6.79	0.83	0.85	0.66	0.19	0.15	0.17	0.12	0.15	0.24	0.04	0.05	0.04	0.05	0.04	0.57
other annual crop	0.33	0.41	0.43	0.38	0.37	0.38	0.43	0.31	0.37	0.37	0.31	0.31	0.25	0.19	0.19	0.25	0.28	0.27
lettiement	0.77	0.79	0.84	0.87	0.78	0.74	0.19	0.14	0.14	0.15	0.19	0.17	0.05	0.03	0.01	0.01	0.03	0.07
iness, Shrub, Cleared land	0.29	0.55	0.49	0.44	0.48	0.43	0.36	0.40	0.34	0.52	0.34	0.55	0.35	0.26	0.18	0.24	0.18	0.27
dising	-	-		1.00	-	-	0.00	0.00	0.00	0.00	0.00	0.00			-	-	-	
Water body	0.72	0.81	0.64	0.87	0.88	0.69	0.34	0.18	0.14	0.09	0.10	010	0.04	0.05	0.23	0.04	0.03	0.27

Gambar 21. Input data fraksi luasan area untuk masing-masing kelas slope

KEGIATAN KONSERVASI (CONSERVATION ACTION) 2.8.

Data input untuk kegiatan konservasi untuk masing-masing tipe tutupan lahan dapat diperoleh dari hasil diskusi/wawancara atau pengamatan lapangan. Nilai input kegiatan konservasi dalam model GenRiver merupakan hasil pembobotan dari beberapa faktor, vaitu:

Luasan area yang menerapkan kegiatan konservasi untuk masing-masing tipe tutupan lahan (0 = tidak ada area yang menerapkan kegiatan konservasi, 1 = semua area menerapkan kegiatan konservasi)

b) Efektivitas kegiatan konservasi yang dilakukan dalam menurunkan erosi (0 = kegiatan konservasi sama sekali tidak efektif dalam menahan erosi, 1 = kegiatan konservasi 100% efektif untuk menahan erosi)

c Luas area untuk masing-masing kelas slope

Londonus tuno		Cira	isea	
Landcover type	2012	2015	2018	2019
Undisturbed forest	0.00	0.00	0.00	0.00
Logged over forest-high	0.00	0.00	0.00	0.00
Logged over forest-low d	0.00	0.00	0.00	0.00
Mixed garden	0.00	0.00	0.00	0.00
Coffee agroforest	0.00	0.00	0.00	0.00
Rubber monoculture	0.00	0.00	0.00	0.00
Oil palm monoculture	0.00	0.00	0.00	0.00
Teak plantation	0.00	0.00	0.00	0.00
Sengon plantation	0.00	0.00	0.00	0.00
Pinus plantation	0.00	0.00	0.00	0.00
Others timber plantation	0.00	0.00	0.00	0.00
Tea monoculture	0.00	0.00	0.00	0.00
Rice field	0.08	0.15	0.19	0.20
Other annual crop	0.00	0.00	0.00	0.00
Settlement	0.00	0.00	0.00	0.00
Shrub, grass and cleared	0.00	0.00	0.00	0.00
Mining	0.00	0.00	0.00	0.00
Water body	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00

Fraksi Area yang menerapkan Kegiatan Konservasi

Gambar 22. Input data bobot kegiatan konservasi untuk masing-masing tipe tutupan lahan di masing-masing sub-DAS

2.9. RIPARIAN AREA

Riparian area dalam model GenRiver didefinisikan sebagai area di sepanjang sungai dengan jarak 0-100 m dan 100 – 200 m. Untuk masing-masing area tersebut selanjutnya diidentifikasi fraksi luasan area tutupan lahan barbasis pohon, seperti hutan, agroforestri, kebun, dll, yang memiliki kemampuan untuk menyaring sedimen sebelum masuk ke sungai. Gambar 23, menunjukkan fraksi luasan area tipe tutupan lahan berbasis pohon di riparian area sebagai input model GenRiver.

		0-100m				100-200	m		>200m			
	2012	2015	2018	2019	2012	2015	2018	2019	2012	2015	2018	2019
lirasea	0.06	0.14	0.12	0.12	0.06	0.13	0.11	0.11	0.30	0.39	0.38	0.38
litarik	0.06	0.08	0.10	0.10	0.05	0.07	0.08	0.08	0.19	0.27	0.26	0.26
lisangkuy	0.19	0.23	0.18	0.18	0.18	0.21	0.16	0.16	0.41	0.45	0.41	0.41
likapundung	0.15	0.14	0.14	0.14	0.14	0.12	0.13	0.13	0.27	0.27	0.27	0.27
liwidey	0.23	0.34	0.34	0.34	0.22	0.29	0.28	0.28	0.50	0.60	0.62	0.62
liminyak	0.16	0.20	0.20	0.20	0.26	0.27	0.27	0.27	0.52	0.50	0.46	0.46

TREE-BASED SYSTEM in RIPARIAN AREA

Gambar 23. Input data untuk fraksi tree-based system in the riparian area

MENJALANKAN GENRIVER MODEL

3.1. IMPORT DATA INPUT

Setelah semua data GenRiver.xls terisi, maka selanjutnya dapat dimasukkan ke dalam GenRiver STELLA, dengan proses import data (untuk STELLA 9.1.4). Adapun langkahlangkah untuk melakukan import data dari GenRiver.xls ke STELLA adalah sebagai berikut:

Buka kedua file GenRiver (GenRiver.xls dan GenRiver. STM)

2 Dalam GenRiver.STM, pilih menu Edit, kemudian pilih Import data untuk membuka menu import data

Pilih One Time jika proses import data tanpa dilakukan dengan membuat link antara GenRiver.xls dan GenRiver.STM, atau pilih Persistent jika proses import data dilakukan dengan membangun link antara kedua file tersebut. Jika link tersebut dibangun maka setiap perubahan dalam GenRiver.xls akan langsung diupdate dalam GenRiver.STM.

By Mexice van Noordwijk, Al fantis, Rudy Harts Widels,Desi Seywitt GenRiver model is a genetic model of hiter fow in a cathemet that is dynamics of land cover change and rainfall, and different properties for s to analyze niem flow in here catchments in SE. Alas: The Way Besia (Sumbe default input parameters are based on the Sumbergive case. The model heads a new as a summation of theams, each originating total area and distance to the niem rudthew or measurement point interact registrate models. The subcatchment model represents interception, ret subsautemets which schemes are device proteins. Spatial patterns in calarias regarate models. The subcatchment model represents interception, ret 29 subcatchments can be simulated in this model. The number of land	Import Data Import
To Suppl Mess	Import Data Source Exail File Name Browner. Data Orientation Sales Net Detamine expenses Sales Statements

Gambar 24. Tampilan menu import data dalam GenRiver.STM

- 4 Pilih 'Browse' untuk mencari file GenRiver.xls yang dilakuakn import data ke GenRiver.STM
- 5 Pilih Sheet 'LinkToStella9' dalam GenRiver.xls yang akan diimport ke GenRiver.
 - Ulangi langkah 5 untuk Sheet 'LinkToStella9(2)' dan Sheet 'LinkToStella9(3)
 - Pilih OK.

Untuk beberapa kasus proses import data cukup memakan waktu, terutama jika pilihan 'Persisten' dipilih untuk membuat link antara GenRiver.xls dan GenRiver.STM. Selain itu sedapat mungkin selama proses import data masing berlangsung tidak membuka atau mengganggu file GenRiver.xls karena dapat menyebabkan proses import data terganggu.

3.2. MENJALANKAN MODEL GENRIVER

Untuk menjalankan model GenRiver maka dalam GenRiver.STM pilih 'To Run & Output', yang kemudian akan membawa ke halaman 'Run and Output Section' (Gambar 25). Setelah masuk ke dalam halaman tersebut maka selanjutnya pilih 'RUN' untuk menjalankan model, 'STOP' untuk menghentikan proses secara keseluruhan, 'PAUSE' untuk menghentikan proses sementara dan 'RESUME' untuk lanjut menjalankan model. Setelah tombol 'RUN' dipilih maka angka dalam simulation time akan mulai berubah seiring lamanya proses simulasi. Beberapa parameter yang dapat diupdate sesuai dengan kebutuhan pengguna seperti 'I RainStartYear', 'I CaDOYStart', dll dapat dilihat dalam buku Manual GenRiver, namun demikian hal ini merupakan pilihan (jika tidak dilakukan perubahan tidak akan memengaruhi ouput model GenRiver).

Gambar 25. Tampilan halaman Run & Output Section dalam GenRiver.STM

3.3. EXPORT DATA OUTPUT

Setelah model GenRiver selesai disimulasikan maka output utama berupa tabel neraca air dapat dilihat dalam 'Model Performance & Watershed Indicator'. Adapun proses export data dapat dilakukan melalui langkah-langkah sebagai berikut:

1. Klik 2x pada Icon tabel dengan tulisan 'Model Performance & Watershed Indicator' untuk membuka tabel

Tekan Ctrl+A untuk memilih keseluruhan tabel

Klik kanan kemudian pilih 'Save As Txt'

• M													
		o input Menu	Model Se	ector									
Performa	ince & Water	shed indicator					>	¢					
M 5162021	Model	Performance & Wat	wished indicator (No	olei Performance	Watershed Indicate	17 P	<u>-9</u>	6,1	able or But	tion to se	ee the		
-		0.00	T AT INVOLUTION THINKS	L or existing	C BASE BURGE	C Interchoo	1 20	-	ation resul	and a			
	1.00		7.67	0.00	1.00		-	1			(Hand)		-
-	2.00	1.00	10.17	0.00	0.00		-						
-	3.00	1.00	7.90	1.30	0.00		-		Model Perform	arca &	HEPP	HEPP	Le
	4.00	1.00	7.89	2.26	0.00		-		Watershed In	PC404			
	5.00	0.00	8.29	7.8	0.00	0.0	0						
0	8.00	0.00	8.10	0.90	0.00	0.0	0		> 0		-		
7	7.00	0.00	1.40	8.71	0.00	0.0	0	1		Subcatc	hment		
	8.00	0.00	4.17	12.10	0.00	0.0	0	-		Balan	ce		
	8.00	0.00	4.81	11.00	0.00	4.0	0			_			
10	10.00	0.00	0.00	10.21	0.00	4.0	0		ANALERO				
11	11.00	0.00	5.97	9.25	0.00	0.0	0		Canal Aller				
12	12.00	0.00	6.10	8.00	0.00	9.0	0						
13	13.00	0.00	6.01	7.54	0.00	0.0	0						
34	14.00	0.00	5.87	4.81	0.00	0.0	0						
15	15.00	0.00	6.55	6.0	0.00		0						
96	16.00	0.00	6.45	8.79	0.00		0						
17	17.00	0.00	9.60	6.10	0.00	9.0	0						
14	18.00	0.00	8.77	5.80	0.00	0.0	0						
19	19.00	0.00	8.58	4.27	0.00	0.0	0						
20	20.00	0.00	6.15	34.90	0.00	0.0	0						

Gambar 26. Tabel 'Model Performance & Watershed Indicator' hasil simulasi model GenRiver

Simpan data dalam bentuk .Txt

Data hasil simulasi model GenRiver akan diexport dalam bentu .Txt, namun demikian bentuk data ini masih dapat di buka dengan menggunakan MS. Excel untuk dilakukan analisis lanjutan.

PARAMETERISASI, KALIBRASI DAN VALIDASI

4.1. PARAMETERISASI & KALIBRASI MODEL

Parameterisasi dan kalibrasi merupakan suatu proses penyesuaian beberapa nilai parameter (parameterisasi) dalam model dengan tujuan agar hasil simulasi menyerupai kondisi DAS sebenarnya. Nilai-nilai parameter yang disesuaikan pada umumnya merupakan parameter yang sulit untuk dilakukan pengukuran seperti tingkat infiltrasi, kapasitas maksimum tanah, kekasaran sungai, dll (Tabel 1). Parameter-parameter tersebut dapat ditemukan dengam memilih 'To Input Menu' yang selanjutnya akan membawa ke halaman 'Input Section' (Gambar 27).

Acronym	Definition	Default Value
RainInterceptDripRt(i)	Rain interception Drip Rate	10 mm
RainMaxIntDripDur(i)	Rain interception Drip Duration	0.5 mm
InterceptEffectontrans(i)	Rain Interception Effect on Transpiration	0.8 mm
RainIntensMean	Average rainfall intensity	30 mm/day
RainIntensCoefVar	Coefficient of variation of rainfall intensity	0.3
MaxInfRate(i)	Maximum infiltration capacity per unit i	720 mm day ⁻¹
MaxInfSubsoil(i)	Maximum infiltration capacity per unit i	120 mm day-1
PerFracMultiplier(i)	Daily soil water drainage as fraction of groundwater release fraction	0.13
MaxDynGrWatStore(i)	Dynamic groundwater storage capacity	300 mm
GWReleaseFracVar(i)	An option to have a constant groundwater release fraction for each subcatchment or using single value for the whole catchment	0.1
Tortuosity(i)	Stream shape Factor	0.4
Dispersal Factor(i)	Drainage density	0.3
River Velocity(i)	River Flow velocity	0.4 m s ⁻¹

Tabel 1. Parameter-parameter yang biasa dilakukan parameterisasi dan kalibrasi

INPUT SECTION	
To Main Mover To Pan & Model Sector	
Rainfall River	
Soil and Plant Water	
Soil Structure Dynamic Cattle	

Gambar 27. Tampilan input section yang berisi berbagai input dalam bentuk angka tunggal (single value) yang mungkin diperlukan dalam proses parameterisasi dan kalibrasi

4.2. VALIDASI MODEL

Validasi atau evaluasi model dilakukan dengan membandingkan antara hasil simulasi dengan data pengukuran dengan menggunakan beberapa indikator statistik Tujuan dari proses validasi ini adalah untuk melihat performa model dalam meniru system hidrologi yang disimulasikan. Beberapa indikator statistika yang digunakan untuk membandingkan antara hasil simulasi model dengan data yang sebenarnya dapat dilihat pada Tabel 2.

No.	Indikator statistik	Persamaan	Intepret	tasi hasil
1	Nash-	$\begin{bmatrix} n \\ n \end{bmatrix}$	Hasil	NSE
	Sutcliffe Efficincy	$\sum (Y_i^{obs} - Y_i^{sim})^2$	Very Good	0.75 <nse≤1.00< td=""></nse≤1.00<>
	Linomoy	$NSE = 1 - \left \frac{\frac{i=1}{n}}{\frac{n}{n}} (-chs - cmean)^2 \right $	Good	0.65 <nse≤0.75< td=""></nse≤0.75<>
		$\sum_{i=1}^{N} (Y_i^{out} - Y^{mean})$	Satisfactory	0.50 <nse≤0.65< td=""></nse≤0.65<>
		dimana Yiobs = debit pengukuran, Yisim = debit simulasi model, Ymean =rata-rata debit pengukuran, dan n = jumlah data pengukuran	Unsatisfactory	NSE≤0.5
2	Koefisien korelasi	$r = \frac{\sum (x_i - x_{mean})(y_i - y_{mean})}{\sqrt{\sum (x_i - x_{mean})^2 (y_i - y_{mean})^2}}$ dimana xi = data pengukuran, yi = data simulasi, xmean = rata-rata data pengukuran		
		simulasi, xmean = rata-rata data pengukuran and ymean =rata-rata data simulasi		

Tabel 2. Indikator statistika untuk proses validasi dan evaluasi model

No.	Indikator statistik	Persamaan	Intepretasi hasil
3	Double mass- curve	Membandingkan kumulatif data curah hujan dengan data kumulatif debit (Gambar 28).	Melalui perbandingan ini, diharapkan nilai kumulatif debit lebih kecil dari pada curah hujan, dengan selisih lebih dari 500 mm/ tahun

Gambar 28. Contoh double mass-curve (Contoh kasus DAS Citarum)

ANALISIS HASIL

Analisis hasil simulasi model GenRiver dapat dilakukan menggunakan kriteria dan indikator fungsi hidrologi (Tabel 3). Proses analisis hasil ini dapat menggunakan file 'IndicatorWathershed.xls' yang telah disediakan, atau dapat juga menggunakan indikatorindikator lain sesuai dengan kebutuhan pengguna. Berbagai kriteria dan indikator secara lengkap dapat ditemukan dalam Manual Model GenRiver. Selanjutnya proses analisis dapat dilakukan dengan menghitung indikator-indikator tersebut untuk masing-masing tahun, sehingga dapat dilihat tren perubahannya sebagai akibat dari perubahan tutupan lahan. Gambar 29 dan 30 merupakan contoh hasil analisis neraca air dan erosi-sedimentasi sebagai dampak perubahan tutupan lahan.

Module	Variable example	Respondent
Neraca air	Hasil air (water yield) dari masing-masing komponen neraca air per unit curah hujan	Fraksi Evaporasi= (Evaporasi tahunan)/(Curah hujan tahunan)
		Fraksi Aliran Permukaan= (Aliran permukaan tahunan)/(Curah hujan tahunan)
		Fraksi Aliran Bawah Permukaan= (Aliran bawah permukaan tahunan)/(Curah hujan tahunan)
		Fraksi Aliran Dasar= (Aliran dasar tahunan)/(Curah hujan tahunan)
Penyangga Puncak hujan (Buffering peak rain event)	Buffering indicator (BI)	$BI = 1 - Q_{Abv,Avg} / A \times P_{Abv,Avg}$
		Dimana:
		$O_{Abv,Avg} = \sum \max (Q - Q_{Avg}, 0)$
		$P_{Abv,Avg} = \sum \max(P - P_{Avg}, 0)$
		O _{Abv.Avg} = Total debit diatas rata-rata
		P _{Abv.Avg} = Total curah hujan diatas rata-rata
		A = Luas area

Tabel 3.	Contoh kriteria dan indikator fund	gsi hidrologi yang dapat digunakan untuk
mengint	epretasikan hasil simulasi Model	GenRiver

Gambar 29. Perubahan aliran permukaan, aliran bawah permukaan dan aliran dasar sebagai hasil perubahan tutupan lahan (contoh kasus DAS Citarum)

Gambar 30. Perubahan erosi hasil simulasi model GenRiver (contoh kasus DAS Citarum)

World Agroforestry (ICRAF)

Program Indonesia

JI. CIFOR, Situ Gede, Sindang Barang, Bogor 16115 [PO Box 161 Bogor 16001] Indonesia; Tel: +(62) 251 8625 415 ; Fax: +(62) 251 8625416; Email: icraf-indonesia@cgiar.org

www.worldagroforestry.org/country/Indonesia www.worldagroforestry.org/agroforestry-world

Australian Government Australian Centre for International Agricultural Research