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Abstract
Payments for ecosystem services are becoming popular components in strategies to conserve
ecosystems and biodiversity, but their effectiveness remains poorly documented. Here we present
counterfactual-based evidence on the conservation outcomes of the pilot stage of Peru’sNational
Forest Conservation Program (NFCP). TheNFCP provides direct payments to indigenous
communities in the Amazon, conditional on avoided deforestation and the adoption of sustainable
production systems. Using a spatially explicit quasi-experimental evaluation design, we show that the
payment scheme has achieved only small conservation impacts, in terms of avoided deforestation.
Counter-intuitively, thesematerialized largely on land not enrolled for conservation, due to spillover
effects. Conservation effects on contracted landwere negligible because communities were not chosen
according to high deforestation threats, and they self-enrolled low-pressure forest areas for
conservation. Occasional non-sanctioned contract incompliance contributed to these outcomes.We
highlight implications for the design and implementation of up-scaled national conservation
programs.Methodologically, we demonstrate the important role of choosing the appropriate spatial
scale in evaluating area-based conservationmeasures.

Introduction

Payments for ecosystem services (PES) are voluntary
transactions between services users and providers,
conditional on natural resources management rules
that generate off-site services [1]. PES may potentially
be more direct and cost-effective than traditional
conservation tools, such as integrated conservation
and development projects (ICDP), and have thus
become a popular policy instrument [2–4]. Existing
PES schemes often target hydrological services, carbon
sequestration, and landscape beauty [5]. Payments for
reduced emissions from deforestation and forest
degradation (REDD+), the second largest source of
emissions globally [6], could become an important
climate change mitigation strategy [7]. The Paris

Agreement encourages developing countries to imple-
ment results-based payments such as REDD+to
preserve forests and secure non-carbon co-benefits.

And yet, how effective are PES in practice?Many
scholars have scrutinized the environmental and social
outcomes of PES [8], but few counterfactual-based
evaluations exist [9–11]. Early results suggested mixed
evidence [12]; more research is needed to understand
why outcomes differ across programs and sites
[5, 10, 13, 14]. Understanding the role of intervention
contexts versus scheme design in determining con-
servation outcomes is an important research gap [12].
This study makes two contributions to address this
gap. First, we focus on collective rather than individual
PES contracts, designed to conserve community-
owned forests—a common institutional arrangement
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in tropical forests. Second, we provide PES impact
estimates at both community and sub-community
scales to better account for intra-community spillover
effects.

In addition, we contribute methodologically to the
conservation impact evaluation literature by estimat-
ing effects at two different spatial scales, namely, at the
scale of polygons of different sizes, defined by the
boundaries of communities, and at grid cells of 225 ha
each, located within the communities´ polygons. Ave-
lino et al [15] demonstrated a scale effect on impact
estimates, resulting from loss of heterogeneity and
variation when moving to higher aggregation levels
(i.e. spatial aggregation bias). Few forest conservation
evaluations have taken this potential source of bias
into account [16, 17], and thus deserves further
scrutiny.

We estimate the environmental impact of a collec-
tive PES scheme in Peru, run by the National Forest
Conservation Program (henceforth NFCP) in indi-
genous communities enrolled between 2011 and 2013,
using remotely sensed deforestation data from 2001 to
2015 [18–21].We use spatialmatching techniques [22]
to control for self-selection bias and post-matching
regression analyses to eliminate unobserved time-
invariant heterogeneity [23]. Our findings indicate
positively significant, but marginally sized conserva-
tion effects. These accrue outside of self-enrolled com-
munity conservation areas, which we attribute to
economic and behavioralmechanisms.

NFCPbackground
In 2012, 51% of total greenhouse gas emissions in Peru
originated from deforestation in the Amazon [24],
primarily driven by shifting agriculture [25], gold
mining [26], and cash-crop plantations such as oil palm
[27] and coca (Erythroxylum spp) [28]. Estimates of
deforestation suggested an increasing trend [18], with
an average of 160 000 ha per year between 2011 and
2016 [21]. As a contribution to climate change mitiga-
tion, the Government communicated a zero-deforesta-
tion target to the United Nations Framework
Convention on Climate Change by 2021 [29]. In 2010,
the Peruvian Ministry of Environment created the
NFCP ‘to contribute to the conservation of tropical
forests and the generation of income for the most
vulnerable, poor and marginalized peoples’ [30]
(author’s translation). The NFCP seeks to: (i) map
forestlands, (ii) promote sustainable production sys-
tems, and (iii) strengthen forest conservation capacities
[30]. Given the government’s lack of experience in
paying cash to landholders for not deforesting, condi-
tional ‘projects’ had to be implemented to provide local
compensatory benefits, while also striving to ‘green’
local livelihoods. This collective PES-cum-ICDP inter-
vention intended to align conservation with poverty
alleviation goals, piloted in selectedAmazon indigenous
communities [31]—some of the poorest population

groups inPeru [32]. From the approximately 1300 titled
native communities [32] controlling roughly 12million
hectares of forests (figure 1), 50 communities were
enrolled between 2011 and 2013 for the pilot phase
(table 1). These communities were selected non-
randomly, using criteria ranging from forest conditions
to accessibility indices [33], and subsequently applied at
two spatial-administrative levels: first, at the province
level (second highest sub-national political unit in
Peru), and second, at the community level. The logic
behind this approach was to first prioritize the
provinces with the highest threats of deforestation and
then to select communities within them. However,
eventually those criteria were not implemented consis-
tently and transparently (SM-Targeting available online
at stacks.iop.org/ERL/14/045004/mmedia), leaving
room for discretional targeting decisions. Together with
the fact that communities voluntarily decide to partici-
pate (SM-Engagement), institutional selection created de
facto a source of adverse selection bias [34]: as we show
under Results, communities with historically higher
deforestationwereunderrepresented in theNFCP.

The NFCP provides collective payments of 10.00
Peruvian Soles (1.00 Peruvian Sol∼USD 0.29 in 2015)
per year and hectare of forest enrolled under five year
contracts, supplemented by technical assistance. The
payment is publicly funded and is conditional upon
(i) its spending on a collectively agreed investment
plan to finance forest-friendly production (e.g. agro-
forestry, aquaculture, and small animal husbandry),
community forest patrolling, and public services or
infrastructure, and (ii) themaintenance of forest cover
in ‘conservation forest zones’ (CFZ) that communities
define themselves. This community self-selection of
land constitutes a second source of adverse selection
bias [34]. The remaining land, i.e. ‘other use zones’
(OUZ), is not subject to land use restrictions and typi-
cally contains homesteads, agricultural fields, and sec-
ondary as well as primary forests remnants (figure 2).
Our empirical strategy seeks to measure the NFCP’s
impact during its five initial years (2011–2015) on
deforestation in the community lands, as a whole, and
in both the CFZ (primary effect) andOUZ (spillovers).
We use the term ‘spillover’ to denote that the NFCP’s
intervention to avoid deforestation, targeted at the
enrolled CFZ, may also have indirect yet measurable
impacts on the unenrolled subareas of the treated
communities (OUZ).

Expected impact channels

The main NFCP’s strategy follows a PES-cum-ICDP
(payments combined with productive change) logic
(see figure S1 available online at stacks.iop.org/ERL/
14/045004/mmedia), assuming implicitly that capital
and technical constraints prevent the adoption of
sustainable land use systems [35]. Payments and
assistance thus enable ‘integrated projects’ to provide
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income streams and compensate for the opportunity
costs of avoiding deforestation within CFZ. Economic
theory, however, suggests that communitieswill define
areas with low opportunity costs as CFZ [36]: being
widely unsuitable for agricultural use, and thus
unthreatened, their formal ‘protection’ provides little
if any reductions in deforestation. Moreover, income

generation from projects require access to markets
and qualified technical assistance, the lack of which
has often dampened the success of ICDP [35].
In addition, community forest patrolling could reduce
land tenure insecurity and deforestation [37].
However, we expect little forest impact here, due to
under-funding of this component (annually only

Figure 1. Study area showing non-forest (includes no forest classes such as savannah vegetation and deforested areas up to 2000),
treated communities between 2011 and 2015, all other non-treated communities, rivers, primary forests as of 2015, and deforested
areas between 2000 and 2015.

Table 1.Payments and enrolled communities.

2011 2012 2013 2014 2015

Number and area of beneficiaries considered

Number of newly enrolled communities 17 15 18 0 0

Number of cumulatively enrolled communities 17 30 45 40 40

Number of communities evicted 0 2 3 5 0

Total area of enrolled communities (ha) 196 960 278 981 558 997 506 116 506 116

Total area of enrolled communities’CFZ (ha) 141 808 193 729 414 901 374 679 374 679

Participating families

Total number of participant families 693 1759 3380 2960 2960

Payments

Total (PEN) 1 418 080 1 937 290 4 149 010 3 746 790 3 746 790

Per participating family (PEN) 2046 1101 1228 1266 1266

Note: PEN=Peruvian Sol (currency)∼USD0.29 in 2015.
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3–4 paid-for patrolling rounds). Similarly, social
investments (e.g. improving school infrastructure) are
in-kind payments with disputed linkages to deforesta-
tion [38], which we expect to be marginally influential
on land-use decisions.

We consider two rival explanations of conservation
outcomes in CFZ and, by way of spillover effects, in
OUZ. First, project implementation (e.g. tree-crop plan-
tations, alternative livelihood investments) will directly
increase labor demand in the short run, thus reducing
labor available for traditional land-use activities, and thus
mitigating deforestation pressures. Second, awareness in
participating communities of NFCP’s forest monitoring
could produce short-run behavioral changes: in order to
avoid upfront conflicts and please implementers, com-
munities consciously curbdeforestation, i.e. the so-called
Hawthorne effect [39]. Data limitations prevent us from
explicitly testing for these alternative impacts, but
insights below from a dynamic treatment effect analysis
provide some supporting evidence.

Methods

Data
We created two datasets, one for community polygons
and one for cells. The first is comprised of 992

communities (50 treated and 942 non-treated), for
which we could gather geographical, biophysical, and
socioeconomic attributes (table S2 in the SM). The
second only includes cells that partially or fully overlap
with polygons representing community lands, includ-
ing those in CFZ and OUZ (figure 2), and that present
a deforestation risk larger than 1% (SM-Forest risk
model). We developed a deforestation risk model to
cope with the fact that the distribution of the observed
annual deforestation is skewed towards zero and thus
to focus only on cells with a minimum risk of 1% of
having been deforested between 2001 and 2010.We fit
a logistic regression model, where the outcome is
measured as the fraction of a cell deforested between
2001 and 2010, and covariates include: population,
number of houses, area of coca plantations, number of
population centers, community area, slope, precipita-
tion, distance to protected areas, forest loss density in
2010, distance to population centers within commu-
nities, internal distance to the community’s bound-
aries, share area of forest in 2010, spatially lagged
biomass, and distance to deforestation outside com-
munities in 2010. Using the fitted values of the model,
we discard all cells with a fitted value smaller than or
equal to 0.01. This effectively reduced the number of
total cells and treated cells with no deforestation in any

Figure 2.Units of analysis and zones. Top-left panel presents polygons as the unit of analysis andwhole communities as the zones; for
three indigenous communities we show treated polygons (brown) and non-treated communities (light blue). Top-right panel presents
cells (225 ha) as units of analysis andwhole communities as zones. Bottom-left panel presents cells (225 ha) as units of analysis and
CFZ (green) andOUZ (yellow) zones.
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year between 2001–2015 to only 11%. Only the
trimmed cell-dataset is used for impact evaluation.

We define the outcome variable as the total area
(ha) of annual gross deforestation within community
lands for both units of analysis. We used a deforesta-
tion dataset, covering 15 years (2001–2015), within the
Peruvian Amazon [18–21], and define deforestation as
the complete removal of forest cover from a Landsat
pixel [18].

Empirical approach
We use a quasi-experimental approach that combines
matching and double difference regression models to
estimate the average treatment effect on the treated
(ATT). As a pre-processing approach, matching
reduces the selection bias due to the non-random
selection of enrolled communities and CFZ, an
approach that is increasingly used to measure con-
servation outcomes [36, 40–45], including in the
context of the Peruvian Amazon [32, 45, 46]. We
measure effects at different spatial scales in both
enrolled and non-enrolled community lands (SM-
Treated units).We start by comparing outcomes at the
scale of decision units using spatial polygons and cells
(225 ha each) of treated and untreated-communities
(SM-Cells and table S1). We chose an aggregated area
of 225 ha because the minimum sizes of (i) treated
community polygons and (ii) CFZ-polygons are
2700 ha and 1500 ha, respectively. Thus, there are at
least approximately 12 and 6 units covering each of
these polygons. We believe that aggregating the out-
come variable from 0.09 to 225 ha improves the
representation of the land use decision unit and
reduces potential bias arising from spatial autocorrela-
tion [15, 47].

This approach, however, aggregates over intra-
community effects, given that payments restrict defor-
estation only in CFZ. Avoided CFZ deforestation
could be partially outweighed by added OUZ defor-
estation (negative spillover, i.e. leakage). Alternatively,
participants could shift resources to fulfill the NFCP’s
rules and thereby reduce deforestation in OUZ (posi-
tive spillover). Thus we also estimate the ATT in CFZ
and OUZ cells, separately. For this, we model at the
cell level which areas of non-participating commu-
nities would have most likely been selected as CFZ
and OUZ from which to withdraw a control group
(SM-Modeling untreatedCFZ andOUZ).

We use one-to-one nearest neighbor matching
with replacement to find a control group from
the pool of untreated communities and cells (SM-
Matching), using the Genetic algorithm [48] of the R
Match function and the Mahalanobis distance for
polygons and cells, respectively, and the exact distance
for the Department identifier in both. We use a set of
covariates from a pre-treatment data set of geo-bio-
physical, land-use and land-cover, infrastructure, and
socioeconomic variables (table S2 and Covariates in

the SM). These covariates include1: (i) biophysical:
elevation† (m), slope† (°), above ground live woody
biomass†† (Mg/ha), temperature† (°C), precipitation†

(mm), distance to rivers† (m); (ii) infrastructure: dis-
tance to roads† (m), accessibility†† (index), distance to
district’s capitals† (m), distance to population centers†

(m); (iii) land use/land cover: forest cover area in 2010††

(%), deforestation density in 2010† (ha km–2), com-
munity´s total area††† (ha), distance to deforestation
outside communities††† (m), distance to protected
areas†† (m), internal distance to community´s
boundary† (m), deforestation risk†; (iv) spatial lags†††

for: deforestation (ha), forest cover area in 2010 (%),
slope (°), above ground live woody biomass (Mg/ha),
elevation (m); (v) socioeconomic: density of coca
plantations†† (ha km–2), years passed since communal
land titled††† (years), population†† (person), number
of houses††† (house), access to drinking water††† (%),
access to electricity† (%), population centers within a
community†† (center), per capita income†† (PEN),
human development index† (index), total poverty††

(%), and extreme poverty††† (%). These covariates are
likely to affect both the selection of participating com-
munities and deforestation, but are not affected by the
treatment [53]. Treated and control units were drawn
from a total number of 992 communities (polygons)
and 18 319 community-cells (cells). The number of
unique treated and control units for each level of ana-
lyses is: communities (polygons, 50 treated and 36
untreated); communities (cells, 986 treated and 495
untreated); CFZ (cells, 523 treated and 304 untreated);
and OUZ (cells, 655 treated and 305 untreated). The
treatment variable is continuous from 0 to 1 in both
polygons and cells as units of analysis. In the first case
it denotes the fraction of the year in which a commu-
nity polygon has been treated. In the second case it
denotes the share area of polygons representing trea-
ted communities/CFZ/OUZ within a cell and the
fraction of the year in which the cell has been treated.
The control units always have a treatment value
of zero.

We use the matched dataset and apply a fixed-
effect regression model to a panel dataset of 15 years
(2001–2015). The original model at the community
level is:

Y D tX Out pres

t u

_

. 1
ctd ct c ct

t c d cdt

b d g
j a w

= + ¢ +
+ + + + ( )

And at the cell level:

Y D tX Out pres

tW Z t u

_

, 2
ictd ict i ict

i t i d icdt

b d g
l j a w

= + ¢ +
+ ¢ ¢ + + + + ( )

1
Superscripts †, ††, and ††† denote whether covariates are related to

our hypothesis (e.g. they are proxies for the opportunity costs of
conservation); are part of the NFCP targeting criteria; or have
reportedly influenced treatment assignment and outcomes of
conversation initiatives in Peru [25, 45, 49–51] and elsewhere [52],
respectively.
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where Yctd is the annual deforestation in each commu-
nity c, in year t, located in department d (highest sub-
national political-administrative unit in Peru). Dct is
the treatment indicator at the community level, turn-
ing positive in year t when a community is enrolled
(equation (1)). Enrolled communities become a treat-
ment indicator larger than 0 and up to 1 in the year of
enrollment, depending on the number of treated
months during that year. Thereafter, the indicator is 1
if the community is still treated. Similarly, Yictd is the
annual deforestation in each cell i, located in commu-
nity c, in year t, in Department d. Dict indicates
treatment at the cell level using the treated share of cell
i in year t (equation (2)). Cells within communities
have a share of one, and cells at the margin of
community borders have a share between 0 and 1.X′ is
the vector of time-invariant pre-treatment character-
istics, such as slope. These variables can influence the
deforestation trend, and are therefore interacted with
time indicator t. Out pres_ it is the average distance
from community i in year t, to deforestation patches
(>1 ha) located outside communities, and represents
external deforestation pressure. In equation (2), WZ ¢
represents a vector of spatially lagged covariates
weighted by a standardized queen contiguity matrix
(W) [22]. δ, γ, and λ are coefficients to be estimated.
Year fixed effects, denoted by ,tj control for yearly
factors influencing all units of analysis equally, such as,
policy changes to the Peruvian forestry rules [32].
Individual fixed effects ( ca or ia ) represent the
individual unobserved time-invariant heterogeneity
(e.g. soil quality). dw is introduced to capture depart-
ment-specific forest conservation efforts. Finally, ucdt

or uicdt denote the idiosyncratic errors [54].
Taking first differences (FD) of equations (1) and

(2) eliminates all time-invariant unobserved hetero-
geneity ( ca and ia ), which could have biased our esti-
mates (SM-Specification Tests). The coefficient β

represents the ATT on annual deforestation changes
for all years after treatment. For communities, we esti-
mate the FDof equation (1):

Y D X Out pres

u

_

. 3
cdt ct c ct

t d cdt

b d g
j w

D = D + ¢ + D
+ D + + D ( )

For cells we estimate the FD of equation (2):

Y D X Out pres W X

u

_

.

4

ictd ict i ict i

t d icdt

b d g l
j w

= D + ¢ + D + ¢ ¢
+ D + + D

( )

By comparing fixed and random effects models using
the Hausman test [55], we rejected the null hypothesis
(p<0.01) in all cases, thus indicating that a fixed
effects model was more appropriate. Given that
treatment assignment occurs at a higher level than the
cell, namely, at the community level, we cluster
standard errors of b at the level of the community
polygon to avoid inconsistent variance-covariance
matrices due to heteroscedasticity and autocorrelation
in the error terms [56, 57] (see SM-Specification tests).
In addition to the overall effect across 2011–2015, we

also estimate the effect of theNFCP over the years after
enrollment by replacing the treatment variable in
equations (3) and (4) with five new treatment vari-
ables, each one representing year zero through year
four after enrollment. The estimated coefficients for
each of these variables are interpreted as the average
effect of the NFCP after t years of enrollment [58].
Usedmodels are presented in SM-Effect over time.

Results

Matching
After matching, balance between treated and non-
treated groups improved in almost all covariates for all
levels of analysis (tables S3–S6 in SM). We use the
normalized difference, the mean difference in the
standardized empirical-QQ plot (as proposed by [59])
and the mean difference between treated and control
groups to assess covariate balance after matching. For
a few time-invariant covariates normalized differences
remained above the rule of thumb of 35% even after
matching [60]. This potential source of bias is
addressed by using the fixed effects model to estimate
treatment effects [61].

Main results
Annual averages of deforestation between 2001 and
2015 of all treated communities, non-treated commu-
nities, and the matched control group increase over
time (figure 3). The NFCP predominantly selected
communities with relatively lower deforestation
threats. Figure S2 in the SM confirms this by compar-
ing three alternative measures of pre-treatment defor-
estation levels among the 50 treated communities and
top-50 non-treated communities.

Trends were similar at the cell level, where treated
cells, CFZ-cells and OUZ-cells, and their corresp-
onding matched control groups, exhibited increased
deforestation (figure 3). Non-zero, but low levels of
deforestation in the CFZ of treated communities
(figures S3 in the SM) also suggest mild levels of non-
compliance inmost cases. In eight communities, how-
ever, the percentage of the deforested area relative to
the area of the CFZ exceeds the threshold of 0.3% [62],
above which a community is allegedly to be evicted
from the NFCP. Nonetheless, from these eight com-
munities, only two were expelled in 2014, the rest
remained enrolled. Another eight communities were
also evicted (table 1), but due to causes not related to
deforestation in their CFZ (e.g. non-compliance with
their investment plan).

In addition, we observe that there are substantial
differences between the CFZ and the OUZ of partici-
pating communities regarding characteristics that
could affect both the selection of an area as a CFZ and
deforestation outcomes. These include: slope, eleva-
tion, distance to rivers, distance to population centers
within the community, deforestation previous to the
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start of the NFCP (2010) and deforestation risk
(table 2).

The ATT of the NFCP at community scale is statisti-
cally significant and negative (table 3, column 1) at poly-
gon scale (equation (3)), but insignificant at cell scale
(table 3, column 2, and equation (4)). However, our
results in columns 1 and 2 might have been affected by
the independent effects occurred within CFZ and OUZ
leading to a relatively less precise ATT [15]. Therefore in
column3 and 4we present the independent effects of the
NFCP within CFZ and OUZ, respectively. Assessing
intra-community effects (equation (4)), we only find sta-
tistically significant and negative effects in OUZ, not in
CFZ (table 3, column5). This implies that theNFCPmay
have avoided deforestation within OUZ-cells by an aver-
age of 0.4±0.2 ha y−1 (Mean±SE), in every subsequent
year after treatment. This estimate represents a total of
557 ha (considering SE: 59-1, 056 ha) of avoided defor-
estation between 2011–2015, corresponding to a 5.8%
reduction (0.61%–11.1%).

Conservation effects over time
In addition to the overall effect for each scale of
analysis, we also explore how the effect evolves over
time (figure 4). When analyzing community effects,
we find statistically significant and negative ATTs only
in the first year after enrollment at the polygon
(−8.5±3.5 ha) and cell scales (−0.27±0.13 ha).
When analyzing intra-community effects at the cell
scale, we only find significant and negative ATTs in the
second (−0.21±0.1 ha) and first years after enroll-
ment (−0.45±0.17 ha) for CFZ and OUZ cells,
respectively.

These results do not change our previous conclu-
sions regarding overall effects [58], but provide addi-
tional clues to understand the potential impact
channels. The fact that significant effects throughout
are only present in the initial years, dissipating there-
after, suggests that the NFCP might have induced a
behavioral change, but probably only for a short
period.

Figure 3.Annual averages of deforestation of: (top-left) treated communities (N=50), non-treated communities (N=492) and the
matched control group (N=50); (top-right) treated community cells (N=986) and thematched control group (N=986);
(bottom-right)CFZ cells (N=523) and thematched control group (N=523); and (bottom-left)OUZ cells (N=655) and the
matched control group (N=655).
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Discussion

We provide new evidence on the effectiveness of
a collective PES-cum-ICDP scheme in indigenous
communities in the Peruvian Amazon. We assess
impacts at two different spatial scales, using a quasi-
experimental approach with a 15 yr panel of deforesta-
tion. We show that the use of polygons or cells affects
the significance of the ATT. This effect has only
recently received attention in conservation policy
evaluation and appears to stem from well-known
challenges in geospatial statistics [15]. Avelino et al
[15] found that conservation effects inMexico increase
and become less precise with aggregation and that
large units of analysis could generate biased estimates
when treatment is coarsely measured. Hence, we
believe that measuring the effect of the NFCP using
highly aggregated units of analysis, such as polygons
(mean=12 000 ha), which are defined as treated

mainly with a binary variable, could bias the ATT.
Consequently, it is key that we also estimate the NFCP
impact at the cell level for the entire community, so as
to have a ‘second opinion’ at a lower level of aggrega-
tion. In doing so, we found no statistically significant
result at the cell level and thus conservatively conclude
that there is no robust evidence for NFCP impact if the
entire community is considered. Further analyses
including a broader spectrum of spatial scales and
larger numbers of treated communitiesmay be needed
to further explore which spatial scale ismore suitable.

To explain our finding we note that deforestation
in participating communities (as well as within their
separate CFZ and OUZ) has not been halted after the
start of the NFCP. This indicates partial non-com-
pliance and failures in the NFCP´s monitoring and
enforcement capacity. This finding of deficient enfor-
cement of conditionality is not uncommon to PES
schemes around theworld [63].

Table 2.Means and standard deviations (SD), and normalized differences between characteristics of theCFZ and theOUZ cells participating
in theNFCPbetween 2011 and 2015.

Variable

Mean for CFZ

cells

SD for CFZ

cells

Mean forOUZ

cells

SD forOUZ

cells

Normalized

difference (%)

Geographical and biophysical

Slope (grade) 12.73 7.82 8.11 7.36 60.8

Elevation (m) 745.31 521.40 485.02 393.74 56.3

Precipitation (mm) 2025.67 524.01 2014.86 527.82 2.1

Biomass (Mg/ha) 280.15 33.34 246.76 65.40 64.3

Distance to rivers (m) 2822.58 1964.35 1139.64 1159.35 104.3

Infrastructure

Distance to roads (m) 20 055.44 19 386.28 21 130.86 21 588.08 5.2

Accessibility index 84 737.83 45 639.46 83 025.84 40 980.86 3.9

Distance to district’s capitals (m) 24 427.38 15 900.91 27 236.61 16 401.90 17.4

Distance to population centers

within community (m)
3697.51 1767.44 2344.95 1348.55 86.0

Land use/Land cover
Distance to deforestation outside

communities in 2010

3243.66 2115.08 3132.36 2580.57 4.7

Internal distance to community

boundary (m)
927.25 862.73 711.13 669.31 28.0

Deforestation in 2010 (ha) 2.81 9.20 10.74 13.04 70.2

Distance to protected areas (m) 19 635.37 17 831.75 19 398.12 16 096.96 1.4

Deforestation risk 0.023 0.018 0.042 0.035 68.0

N 524 655

Table 3. Impact of theNFCPon deforestation.

ΔDeforestation

Communities (polygons) Communities (cells) CFZ (cells) OUZ (cells)
(1) (2) (3) (4)

ΔEnrollmenti/cdt −6.902* −0.245 0.039 −0.386*

Standard error (3.624) (0.153) (0.09) (0.21)
Spatial lagged covariates No Yes Yes Yes

Number of clusters (communities) 86 179 158 155

Cumulative number of observations (14 years) 1, 400 27, 608 14, 644 18, 340

AdjustedR2 0.027 0.020 0.013 0.030

Note: table reports first difference estimates with the dependent variable being the annual change of the yearly new deforested area (ha).
Standard errors are clustered at the community level. Significance level: *p<0.1.
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Given that communities’ conservation agreements
with the NFCP only include a subset of community
land, we also explored impacts in CFZ and OUZ
separately. Counterintuitively, we only find a small
but significant conservation effect in the non-
contractedOUZ.

We attribute the program’s lack of impact in CFZ
to adverse selection at two levels: first, having targeted
communities with already low deforestation rates (i.e.
an adverse administrative selection) and second, self-
selection bias allowing communities to enroll widely
unthreatened forests. This is a problematic issue in
many conservation programs [12, 44, 64] and can be
avoided by adopting appropriate targeting criteria [65]
and enrolling total community area [66].

Even if the NFCP had adopted and appropriately
implemented targeting criteria, we do not expect that
this would have per se led to a much better outcome.
Ultimately, adverse self-selection bias at the commu-
nity level is likely to be the main reason for the low
effectiveness of theNFCP.

Why, then, would we find a negative (pro-
conservation) ATT in non-contract areas?We point
to two potential causal mechanisms that may comple-
ment each other (figure S1 in SM). First, participating
community members know that the NFCP wants to
see forest conservation within the whole community
area. When a program is recently started, this might
produce a so-called ‘honeymoon’ or ‘Hawthorne’
effect [39]: communities adopt short-lived conserva-
tionmeasures to honor the goals of their contract part-
ners, but this effect dissipates over time. Second and in
the short-run, increased labor demand for project
implementation may have mitigated recurrent defor-
estation pressures, e.g. the opening up of new agri-
cultural fields. Most communities (N=36) invested
the bulk of their received payments in adopting agro-
forestry on abandoned lands—usually a labor-inten-
sive task [67, 68] implemented in their OUZ. If
deforestation was constrained temporarily through
this mechanism, it was a direct result of NFCP

Figure 4.Estimated conservation average treatment effects on the treated (ATT) over time for: (top-left) polygons; (top-right)
community cells; (bottom-left)CFZ cells; and (bottom-right)OUZ cells. Grey bounds represent 95% confidence intervals.
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transfers and could thus be labelled a positive eco-
nomic spillover effect.

To address the above-mentioned sources of bias in
program design, the NFCP should adapt and test addi-
tional selection criteria, giving more weight to the
targeted enrollment of threatened forests at the com-
munity level. Otherwise, adverse selection biases will
continue to jeopardize conservation outcomes [65].
Specifically, we propose the following measures for an
up-scaled programdesign:

(i) Pre-target communities with higher deforestation
threats,

(ii) offer voluntary PES contracts that cover the whole
community area,

(iii) and ensure the conditionality of payments.

Earlier impact assessment work suggests that the
trade-off between boosting additionality of enrolling
the highest threatened communities and the oppor-
tunity costs of implementing the NFCP in such
communities is manageable [31]. However, some
high-threat communities may decline participation
due to negative (real or perceived) welfare effects
[34], so future research should also explore motiva-
tions of participation, adopt both monetary and
non-monetary approaches to cost-benefit analyses
[69, 70], and consider program implementation
costs [63].

Notably, a PES scheme that effectively curbs forest
loss in indigenous communities could affect tradi-
tional productive and cultural activities or jeopardize
food security [71]. We thus stress that participation in
the scheme must remain genuinely voluntary and
emphasize that redesigning the scheme as suggested
above does not interfere with use and access rights. It
merely ensures that communities are being flexibly
compensated according to how much deforestation
they are able andwilling to avoid.

In closing, we recognize that, in addition to the
small conservation effects we found, the NFCP may
have delivered other important benefits to recipient
communities, e.g. in terms of social services and eco-
nomic development that may justify the program’s
average annual budget of 3.9 million USD. Many
public services remain precarious in Amazon indigen-
ous communities [72]. However, from a conser-
vation point of view, we point to a large potential for
boosting impacts through improved design and
implementation.
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