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Abstract
Reducing emissions fromdeforestation and forest degradation, and enhancing carbon stocks
(REDD+) is a crucial component of global climate changemitigation. Remote sensing can provide
continuous and spatially explicit above-ground biomass (AGB) estimates, which can be valuable for
the quantification of carbon stocks and emission factors (EFs). Unfortunately, there is little
information on the fate of the land following tropical deforestation and of the associated carbon stock.
This study quantified post-deforestation land use across the tropics for the period 1990–2000. This
dataset was then combinedwith a pan-tropical AGBmap at 30m resolution to refine EFs from forest
conversion bymatching deforestation areas with their carbon stock before and after clearing and to
assess spatial dynamics of EFs by follow-up land use. In LatinAmerica, pasture was themost common
follow-up land use (72%), with large-scale cropland (11%) a distant second. InAfrica deforestation
was often followed by small-scale cropping (61%)with a smaller role for pasture (15%). In Asia, small-
scale croplandwas the dominant agricultural follow-up land use (35%), closely followed by tree crops
(28%). Deforestation often occurred in forests with lower than average carbon stocks. EFs showed
high spatial variationwithin eco-zones and countries.While our EFs are only representative for the
studied time period, our results show that EFs aremainly determined by the initial forest carbon stock.
The estimates of the fraction of carbon lost were less dependent on initial forest biomass, which offers
opportunities for REDD+ countries to use these fractions in combinationwith recent good quality
national forest biomassmaps or inventory data to quantify emissions from specific forest conversions.
Our study highlights that the co-location of data on forest loss, biomass and fate of the land provides
more insight into the spatial dynamics of land-use change and canhelp in attributing carbon emissions
to human activities.

1. Introduction

Land-use change, mainly deforestation, is the second
largest source of anthropogenic CO2 emissions, with
the majority of this occurring in tropical regions
(IPCC 2013). Reducing emissions from tropical defor-
estation is therefore a crucial component of global
climate change mitigation. Within the ‘Reducing

emissions from deforestation and forest degradation,
and enhancing carbon stocks’ (REDD+) framework,
participating countries are encouraged to develop
national strategies and implementation plans that
reduce emissions and enhance forest sinks. System-
atically measuring, reporting and verifying forest
carbon emissions and removals is a key component in
the REDD+ framework. Carbon emissions from
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deforestation can be estimated by combining activity
data (AD)with emission factors (EF). AD here refers to
the change in forest area, while EF refer to the changes
in carbon stock per unit area, e.g. tons carbon emitted
per hectare of deforestation.

Carbon stock or flow information on the forest
carbon pools can be obtained at three Tiers according
to the IPCC guidelines (IPCC 2006). Tier 1 uses global
default values (i.e. per ecological zone) derived from
the literature, while Tier 2 uses country-specific car-
bon stock or flow data. In Tier 3 more disaggregated
data of carbon stocks in different pools are available
from national inventories, through repeated measure-
ments and supported by modelling. In most cases for
the 3 Tier levels the emission factors are estimated at a
single date corresponding to the data referred in bib-
liographic reference or to the national inventory. Spa-
tially explicit data on carbon stock is valuable due to
the large variation in forest biomass relating to envir-
onmental (rainfall, elevation, soil type etc) and anthro-
pogenic (management practices, land use history etc)
factors (Gibbs et al 2007). Country or region specific
carbon stock data are traditionally derived from forest
inventories, which are valuable but often limited in
geographic representativeness (Gibbs et al 2007). For
AD, tracking land use conversions over time is desir-
able because human activities (i.e. drivers) can be
attributed to forest area change, which can be useful
for REDD+ policy making and implementation (De
Sy et al 2015). This is preferably done in a spatially
explicit manner, in light of the spatio-temporal
dynamics of drivers of forest area change (De Sy et al
2015). Remote sensing is considered essential for
monitoring forest and other land-use changes (Herold
and Johns 2007, De Sy et al 2012).

Capacities of REDD+ countries for forest area
change monitoring on the national level have
improved (Romijn et al 2015), and a number of
REDD+ countries have developed operational
sub-national monitoring systems (e.g. for Brazilian
Amazon). However, in many REDD+ countries forest
inventories are of insufficient quality, geographically
limited, and progress is slow (Romijn et al 2015),
which means that many countries rely on IPCC Tier 1
default values or simplified assumptions until they
build sufficient inventory capacity. Deforestation can
occur in forests with lower or higher than average car-
bon stocks (Baccini et al 2012), which is often not
accounted for in Tier 1 or Tier 2 default values.
Remote sensing can provide continuous and spatially
explicit above-ground biomass (AGB) estimates,
which can be valuable for the analysis and quantifica-
tion of carbon stocks and emission factors (Goetz et al
2009, Saatchi et al 2011, Baccini et al 2012).

Several large scale studies have estimated carbon
emissions from tropical deforestation for the 1990s
and 2000s, using spatially explicit AD and EF data
(DeFries et al 2002, Baccini et al 2012,Harris et al 2012,
Achard et al 2014, Grace et al 2014, De Sy et al 2015,

Tyukavina et al 2015, Zarin et al 2016). All of these stu-
dies, however, base their estimates of carbon emission
on lost forest carbon stock only, and do not consider
the carbon stock of the land use following deforesta-
tion. The fate of the land, and associated carbon stock,
will influence the total carbon losses from deforesta-
tion. For example, it is generally assumed that
mechanised clearing for large-scale agriculture results
in amore complete removal of biomass than for small-
holder farming and pastures (Houghton 2012).
Unfortunately, there is little spatially explicit informa-
tion on the fate of the land following tropical defor-
estation (De Sy et al 2015), and of the associated
carbon stock. Integrating information on the spatial
distribution of deforestation and forest carbon stock
density into emission factors will providemore insight
into the complex spatial dynamics of tropical forest
carbon loss and will allow further refinement of car-
bon emission estimates for REDD+ country report-
ing. In addition, integrating information on land use
following deforestation, and its carbon stock, adds fur-
ther refinement and can help in attributing forest loss
and carbon emissions to human activities. This will be
a valuable source of information for REDD+ mon-
itoring, reporting and strategy development.

Recently, new remote sensing data has become
available that can help to address this issue. De Sy et al
(2015) quantified land use following deforestation (fate
of the land) in South America for the periods
1990–2000 and 2000–2005, with a methodology that
can be extended to other tropical areas. Zarin et al
(2016) extended themethodology of Baccini et al (2012)
to generate a pan-tropical map of above-ground live
woody biomass density at 30 m resolution for circa the
year 2000. These new datasets allow for the co-location
of forest loss, post-deforestation land use and biomass
estimates at similar spatial resolutions for the period
1990–2000. This provides an opportunity to refine
emission factors (i.e. carbon loss per unit area) from
forest conversion by matching deforestation areas with
their carbon stock before and after clearing, and to
assess spatial dynamics of emission factors by taking
into account the follow-up landuse.

Accordingly, our study aims to:

i. Quantify tropical deforestation drivers in Africa,
Asia and LatinAmerica.

ii. Produce carbon stock estimates of tropical forests
and land uses following deforestation by country
and eco-zone, and derive estimates of emission
factors from forest conversion.

iii. Assess spatial dynamics of emission factors by
follow up land use type.

Finally, our study allows making recommenda-
tions to improve carbon emission factors as input for
REDD+ forestmonitoring.

2

Environ. Res. Lett. 14 (2019) 094022



2.Material andmethods

Figure 1 gives an overview of the workflow and
datasets used in ourmethodology.We used a systema-
tic sampling approach. In section 2.1 we describe the
sampling approach and the methodology for deter-
mining deforestation areas and follow-up land use per
sample unit (figure 1(A)). In section 2.2 we describe
how we arrive at emission factors (EF) per follow-up
land use in each sample unit (figure 1(B)). Last, in
section 2.3 we describe the method to aggregate these
results to the regional level.

2.1.Deforestation and land use following
deforestation per sample unit
The Remote Sensing Survey of the Global Forest
Resources Assessment 2010 of FAO (FAO FRA-2010
RSS) (FAO and JRC 2012)was used as input to identify
deforestation areas. FAO FRA-2010 RSS is a spatially
explicit dataset of forest land-use change from 1990 to
2000 and 2000 to 2005 (figure 1(A)). The FAO FRA-
2010 RSS used a systematic sampling design with
sample units (SU) of 10 by 10 km centred on each
degree latitude–longitude intersection point (Eva et al

2012, FAO and JRC 2012, Achard et al 2014). This
leads to a sample of 4000 SUs over the tropics. Each SU
was segmented into delineated areas (polygons)with a
target minimum mapping area of 5 ha. Then, a
supervised automated land cover classification was
carried out. This was later converted to a land use
classification with the help of expert human interpre-
tation. Figure 2 gives an overview of our study area, all
sample units and the FAOecological zones (eco-zones)
(FAO2001) in our study area.

As the land use classification of the original FAO
FRA-2010 RSS study was limited, we assigned a more
detailed (follow-up) land use classification for each
forest loss area by extending themethodology of De Sy
et al (2015) for South America to a larger study area
(Latin America, Africa, part of Asia). De Sy et al (2015)
identified spatial and temporal land use patterns fol-
lowing tropical deforestation in South America for
1990–2005. For this study, we only assigned follow-up
land use to deforested areas in the time period
1990–2000 (figure 1(A)), as this corresponds best with
the pan-tropical map of above-ground live woody bio-
mass density (hereafter referred to as AGBmap).

Figure 1.Conceptual framework of themethodological steps and datasets.
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We classified the follow-up land use by visual
interpretation, using parameters such as land cover,
the presence of certain features within or near changed
areas (e.g. crop rows, watering holes, fences) and the
spatial context and location of change (e.g. distance to
settlements, concessions). Table 1 gives an overview of
the follow-up land use classes and their descriptions. A
variety of satellite imagery was used for the visual
interpretation such as Landsat, Google Earth imagery
(Google Earth 2017) and ESRI world imagery base

maps. In addition to follow-up land use, the con-
fidence (low–medium–high) in the interpretation was
documented. For areas with low confidence, e.g. due
to low resolution imagery, we consulted land use and
remote sensing experts with local knowledge in order
to classify the areas based on their expert knowledge,
and on additional sources available to them such as
high resolution satellite imagery and land use maps.
Finally, all areas were double checked for errors and
consistency. This means each forest loss area has been

Figure 2. Location of sample units (FAO and JRC2012), and ecological zones (FAO2001) in the study area.

Table 1. Follow-up land uses and their description.

Follow-up land use Description

Agriculture Mixed agriculture Mix of agricultural land uses

Large-scale crop Land under cultivation for crops, characterized bymedium (2–20 ha) to large (>20 ha)field
sizes

Small-scale crop Land under cultivation for crops, characterized by very small (<0.5 ha) to small field sizes

(0.5–2 ha)
Tree crops Miscellaneous tree crops (e.g. coffee, palm trees), orchards and groves
Pasture Land used predominantly for grazing; in eithermanaged/cultivated (pastures) or natural (graz-

ing land) setting; includes grazedwoodlands
Infrastructure • Urban, settlements and other residential areas

• Roads, built-up areas and other transport, industrial and commercial infrastructures

• Land used for extractive subsurface and surfacemining activities (e.g. underground and
stripmines, quarries and gravel pits), including all associated surface infrastructure

Other land use All land that is not classified as forest, agriculture, infrastructure andwater:

• Bare land (exposed soil, sand, or rocks)

• Otherwooded land: Land not classified as forest, spanningmore than 0.5 ha; with trees

higher than 5metres and canopy cover of 5%–10%, or trees able to reach these thresholds

in situ, or with a combined cover of shrubs, bushes and trees above 10 percent. It does not

include land that is predominantly under agricultural or urban land use (FAO2010).

• Grass and herbaceous: Land coveredwith (natural) herbaceous vegetation or grasses

• Wetlands: Areas of natural vegetation growing in shallowwater or seasonallyflooded envir-

onments. This category includesMarshes, swamps, and bogs.

Water Natural (river, lake etc) orman-madewaterbodies (e.g. reservoirs)
Unknown land use All land that cannot be classified (e.g. due to low resolution imagery)
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checked at least twice by one or more experts. De Sy
et al (2015) provides more details on the follow-up
land use classificationmethodology.

2.2. Emission factors per sample unit
The emission factor per follow-up land use for each
sample unit was calculated from forest carbon stock
before deforestation (CForest), and the carbon stock of
the land use following deforestation (CFLU). We only
considered the five main follow-up land uses with
sufficient data for calculating CForest: pasture, large-
scale cropland, small-scale cropland, tree crop, and
other land use (table 1). We excluded tree crops from
the calculation of CFLU and EF as we did not have
information on the age of the tree crops.

A pan-tropical 30 m resolution AGB map (Zarin
et al 2016) was used to derive the mean AGB density
for forest and follow-up land uses for each sample unit
(figure 1(B)). This wall-to-wall AGB map represents
AGB density for the year c. 2000. We first processed
the AGBmap to remove asmuch bias as possible when
compared to an extended forest biomass plot database,
following the methodology described in Avitabile et al
(2016). See the supporting information for a full
description of the bias adjustment (S1) is available
online at stacks.iop.org/ERL/14/094022/mmedia.
We will further refer to the bias adjusted AGB map as
the AGBmap.

Our deforestation data represent areas deforested
before 2000, so we can directly estimate themean AGB
of the follow-up land use per sample unit. Since forest
loss occurred between 1990 and 2000 and the AGB
map is dated c. 2000, we cannot directly estimate the
AGB of the cleared forest. Instead we used the mean
AGB of the remaining stable forest (i.e. forest from
1990 to 2005) within a sample unit as a proxy for the
AGB of the cleared forest. We assume that within a
sample unit the AGB of this stable forest is representa-
tive of the cleared forest. So a patch of forest cleared by
pasture would get the same AGB for cleared forest as a
patch cleared for crop within this sample unit. If no
stable forest remained in the sample unit we used an
inverse distance weighted average from the 8 sur-
rounding sample units.

In addition, we used the Hansen forest cover data-
set (Hansen et al 2013), which has the same resolution
(30 m) as the AGB map, as a forest mask for the year
2000 (figure 1(B)) with forest defined as more than
10% tree cover. Although the FAO FRA-2010 RSS
provides a forest–non-forest classification, with forest
defined as land spanning more than 0.5 hectares and a
canopy cover of more than 10% (FAO 2010), a mini-
mum mapping unit of 5 ha was used. Within the 5 ha
mapping unit, dominant forest patches might be
mixed with small patches of other land uses and
vice versa, which results in relatively higher AGB
values for follow-up land use polygons and relatively
lower AGB values for forest polygons. In addition,

since both datasets are from circa 2000, theymight not
exactlymatch temporally (e.g. the FRA-2010 RSS data-
set targets imagery around 1st July 2000 but depending
on data availability imagery is spread along the period
1999–2002, see Beuchle et al 2011). Use of the Hansen
tree cover map corrected for this and for spatial inac-
curacies between the FAO FRA-2010 RSS and AGB
map, by masking out forest pixels in the follow-up
land use polygons and non-forest pixels in stable forest
polygons.

We derived total biomass from AGB for both fol-
low-up land use and stable forest per sample unit by
applying the equation (1) used by Saatchi et al (2011):

Total Biomass AGB 0.489 AGB . 10.89= + ⁎ ( )

In this equation belowground biomass (BGB) is
calculated from AGB using a universal equation
derived from a synthesis of regression equations devel-
oped from field data across multiple biomes (Saatchi
et al 2011).

Total carbon was considered to be 50% of total
biomass as in Achard et al (2014). We did not account
for soil carbon loss.

Finally we derived the emission factor per follow-
up land use (EF) per sample unit by:

EF C C . 2Forest FLU= - ( )

We also calculated the percentage of carbon lost
(EF%):

EF EF C 100. 3% Forest= ⁎ ( )/

2.3. Scaling to regional level
Forest area loss, forest carbon stock (CForest), carbon
stock of the land use following deforestation (CFLU)
and emission factors per follow-up land use were
scaled to the national, eco-zone (FAO 2001) and
continental levels.

To scale up forest area loss per follow-up land use
to the regional (i.e. national, eco-zone, continental)
scales, the forest area loss within each sample unit is
made proportional to the ‘visible land’ area of the
sample unit. The ‘visible land’ area was the full sample
unit area (100 km2) minus cloudy and ‘permanent
water’ areas (i.e. sea in all considered years). In addi-
tion, each sample unit was assigned a weight (wi) (4),
equal to the cosine of its latitude (coslati), because the
actual area represented by a latitude/longitude grid
sample decreased with latitude due to the curvature of
Earth:

w
coslat

coslat
. 4i

i

i i

=
å

( )

The proportions of forest area change per follow-up
land use in each sample unit were then extrapolated to
a given region using the Horvitz–Thompson direct
estimator (Särndal et al 1992) (5)
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and where xic is the proportion of forest area change in
the ith sample unit and wi is the weight of the ith
sample unit. The total area of forest area change per
follow-up land use for this region (FLUregion) is then
obtained from:

A xFLU , 7cregion = ´ ( )

where A is the total area of the region (excluding
permanent water).

The variance of the estimation of the mean for this
systematic sample was calculated as follows:

s
M

w x x
1
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i

n
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2

0
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=
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The standard error (SE) is then calculated as:

A
s

n
SE . 9= ´ ( )

The standard error (SE) represents only the sam-
pling error.

For scaling up the mean carbon stocks of the land
uses following deforestation (CFLU) and emission fac-
tors per follow-up land use (EF) to regional level, we
calculated a weighted mean of all sample unit values
within that specific region. Theweight was determined
usingwi (4) and ‘visible land area’ (i.e. sample unit area
minus cloudy and ‘permanent water’ areas) as above.
We derived the regional values of carbon stock of for-
est cleared by a given land use (e.g. pasture) from
weighted averaging all the carbon stocks of stable for-
ests in sample units where forests were cleared by this
given land use (e.g. pasture). The regional values of
carbon stock of ‘All forests’ comes from averaging all
carbon stock values of stable forest for all sample units

with forests (whether these were deforested or not). If
there were less than five sample units for a follow-up
land use in a region, the results are not shown. If there
were less than ten sample units present, an annotation
was added. We performed a permutation test with
1000 iterations to assess if (1) mean carbon stock of
follow-up land uses and (2)mean carbon stocks of all
forests, all converted forests and forests converted
to a specific land use were significantly different
(p<0.05)within a region.

3. Results

3.1.Deforestation per follow-up land use from1990
to 2000
We estimated that the total deforested area from 1990
to 2000 was 40.5 million hectares for the Latin
American study area, 19.7 million hectares for the
African study area and 16.6 million hectares for the
Asian study area (table 2). In all regions agriculture is
the dominant follow-up land use. In the Latin Amer-
ican countries, deforestation is followed by pasture
(72.2%) and to a lesser extent by large-scale cropland
(10.9%). InAfrica deforestation ismore often followed
by small-scale cropland (61.1%), with a smaller role
for pasture (14.7%). In the Asian study area, small-
scale cropland is also the most dominant agricultural
follow-up land use (35.0%), closely followed by tree
crops (27.9%). In the non-agricultural category, other
land use was important in the Asian region (30.1%).
Other land use was less important in the African
(15.5%) and Latin American regions (6.8%). Infra-
structure accounted for 3.3% of deforestation in the
Asian region, and for only 1.8% and 1.3% respectively
in the Latin American and African study area. More
detailed information on the spatial distribution of
follow-up land uses across the study area can be found
in the supporting information (S2).

Table 2.Estimates of deforested area (103 ha (SE) and%of total) per follow-up land use (table 1) from1990
to 2000.

Africa Latin America Asia

Follow-up land use 103 ha % 103 ha % 103 ha %

Small-scale crop 12 028 (1174) 61.1 1419 (269) 3.5 5813 (921) 35.0

Large-scale crop 812 (425) 4.1 4429 (864) 10.9 89 (36) 0.5

Tree crop 476 (194) 2.4 253 (63) 0.6 4630 (1078) 27.9

Pasture 2883 (811) 14.7 29 272 (2259) 72.2 210 (66) 1.3

Mixed agriculture 35 (30) 0.2 372 (264) 0.9 91 (59) 0.5

Total agriculture 16 234 (1552) 82.5 35 745 (2456) 88.2 10 832 (1441) 65.2

Infrastructure 255 (41) 1.3 735 (264) 1.8 554 (119) 3.3

Other land use 3050 (419) 15.5 2760 (363) 6.8 5000 (1076) 30.1

Water 72 (29) 0.4 1220 (476) 3.0 206 (57) 1.2

Unknown 69 (51) 0.3 88 (77) 0.2 29 (28) 0.2

Total other 3446 (429) 17.5 4803 (719) 11.8 5789 (1128) 34.8

Total 19 679 (1663) 100 40 548 (2613) 100 16 621 (1916) 100
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Table 3.Mean carbon stock estimates (MgCha−1) for all forests, for forests converted to any of the follow-up land uses and for forests converted to a specific follow-up land use (pasture, large-scale cropland, small-scale cropland, other
land use or tree crop), aggregated to continental and eco-zone levels. Values aremean (standard error). Any twomeans sharing the same letters within a region are not significantly different (p<0.05) according to a Permutation Test with
1000 iterations. For example, for the tropical rainforest zone inAfrica, themean carbon stock estimate of ‘Forests converted to Tree crop’ is significantly different from themean carbon stock estimate of ‘All forests’ (donot share same
letter), but is not significantly different from themean carbon stock estimate of ‘Forests converted to Small-scale cropland’ (share same letter).

Forests converted to

Region All Forests Forests converted to any follow-up land use Pasture Large-scale cropland Small-scale cropland Other land use Tree crop

Continent Africa 76 (86)a 41 (60)a 10 (7) 10 (6)a 53 (69) a 19 (24) a 72 (58) a

L. America 128 (58) 85 (43) ad 86 (44) ab 77 (25)c 103 (59) d 85 (39) ad 54 (28) bc

Asia 156 (70) a 128 (60)ad 89 (27)b 100 (21) bcd 122 (61) cd 125 (62) a 139 (58) c

Tropical rainforest Africa 155 (81) a 96 (87) a — — 107 (91) ab 77 (78)* ab 78 (59) b

L. America 155 (44) 111 (39) a 114 (37) a 88 (31) b 117 (62) a 109 (37) a 54 (34) b

Asia 174 (68) a 131 (62) ac 94 (27)* ab — 123 (63) bc 125 (64) ac 144 (59) b

Tropicalmoist deciduous forest Africa 24 (18) a 17 (11) a 10 (8) a 9 (8)* a 19 (11) a 17 (8) a 18 (4)* a

L. America 76 (50) ab 59 (22) c 56 (20) c 72 (20) ac 75 (43) abc 65 (22) ac 47 (14) b

Asia 100 (31) a 95 (21) a 83 (31)* a 101 (11)* a 96 (20) a 95 (25) a 91 (18) a

Tropical dry forest Africa 13 (14) ab 13 (11) ab 9 (5) b 11 (4)* ab 15 (13) a 13 (12) a 13 (3)* ab

L. America 41 (23) ab 41 (26) ab 36 (26) ab 64 (17) a 32 (6)* b 42 (21) ab —

Asia 83 (32) a 93 (41) a 84 (19)* a 88 (9)* a 90 (41) a 103 (61) a 92 (19)* a

Tropicalmountain system Africa 83 (84) a 61 (55) a 18 (11) a 18 (8)* a 70 (57) a 18 (15)* a —

L. America 118 (55) a 99 (54) b 111 (64) b 63 (20)* ab 92 (53) ab 84 (46) b 109 (31)* ab

Asia 199 (57) a 190 (70) a — — 201 (75) a 176 (55) a —

Tropical shrub land Africa 12 (7) a 7 (5) a 6 (4) a — 8 (5) a 9 (8) a —

Asia 152 (67) a 141 (63) a 95 (60)* a — 141 (65)* a — 128 (72)* a

Subtropical humid forest L. America 90 (16) a 90 (11) a 91 (10) a 90 (13) a — 87 (5)* a —

Subtropicalmountain system L. America 35 (4) a 40 (7) a 42 (7)* a — — 35 (4)* a —

*Less than ten sample units present.
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3.2. Carbon stocks and emission factors per follow-
up land use
Table 3 presents themean carbon stock (MgCha−1) of
all forests within an eco-zone, and the mean carbon
stock of forests that were cleared and followed by
pasture, large-scale cropland, small-scale cropland,
other land use, and tree crop.

On the African continent, the mean carbon stock
of all forests was significantly higher than the mean
carbon stock of forests cleared for pasture. In the tro-
pical rainforest eco-zone, forests cleared for tree crops
had lower mean carbon stocks compared to the mean
of all forests. In the African tropical dry forests, forest
cleared for pasture had lower mean forest carbon
stocks than forests cleared for small-scale agriculture
and other land use.

In Latin America, themean carbon stock of all for-
ests was higher than that of cleared forests on the con-
tinental level and in the tropical rainforest. In this
latter eco-zone, forests cleared for large-scale cropland
and tree crops had lowermean carbon stocks than for-
ests cleared for pasture, small-scale cropland and other
land use. In the tropical moist deciduous forest, only
forests cleared for pasture show a significant difference
in mean carbon stocks compared to the mean of all
forests. In the tropical dry forest eco-zone, forests
cleared for large-scale cropland have higher mean car-
bon stocks than forests cleared for small-scale crop-
land. In the tropical mountain system eco-zone forests
cleared for pasture and other land use had lower mean
carbon stocks compared to themean of all forests.

On the Asian continent, the mean carbon stock of
all forests was higher than for forests converted to pas-
ture, tree crops, large-scale and small-scale cropland,
but similar to forests converted to other land use. In
the tropical rainforest eco-zone, the mean carbon
stock of all forests is different from the mean carbon
stock of forests converted to small-scale crop and tree
crops. In the other eco-zones in Asia, there are no dif-
ferences between themean carbon stocks of the differ-
ent forest categories.

The comparison of mean carbon stock differences
(Mg C ha−1) between converted forests and all forests
within a country show that converted forest tend to
have lower mean carbon stocks for all follow-up land
uses (figure 3). This effect is strongest for forests con-
verted to pasture, tree crops and other land use, and
weakest for forests converted to cropland.

In table 4 the mean carbon stock of the follow-up
land uses (CFLU) are shown on the continental and
eco-zone level. On the continental level, for Latin
America and Asia, mean carbon stock of small-scale
cropland and other land use is higher than for pasture
and large-scale cropland. The same pattern can be seen
in the tropical rainforest eco-zone in Latin America.
On the continental level in Africa, only the mean car-
bon stock of pasture and other land use differ from
each other. In the Latin American tropical moist
deciduous forest mean carbon stocks of small-scale

crop and other land use differ from pasture. In this
eco-zone and the tropical dry forest eco-zone on the
African continent, only small-scale crop differs in car-
bon stock compared to pasture. In the tropical moun-
tain system, tropical shrub land and subtropical
humid forest of Africa, other land use tends to have
higher carbon stocks than pasture; and in the sub-
tropical humid forest eco-zone it also tends to have
higher carbon stocks than large-scale cropland.

Figure 4 shows the spatial variability of emission
factor (EF) estimates per follow-up land use across the
three continents. Emission factors on the African con-
tinent tend to be low compared to the other continents
for all land uses except for a few hotspots of small-scale
cropland EFs in the tropical rainforests of Cote
d’Ivoire and DRC. Other high EFs related to small-
scale cropland occur in the tropical rainforests of
Ecuador, Peru, Colombia and Brazil, and across all the
different eco-zones of Asia. The highest emissions fac-
tors for pasture can be mostly found in the tropical
rainforest of Brazil, with some hotspots in Ecuador,
Colombia and Peru. In Asia, pasture EFs are also rela-
tively high, especially in India, and the North of Thai-
land and Lao PDR. Emission factors related to large-
scale cropland tend to be highest in the tropical rain-
forest of Brazil, Bolivia and Argentina and across sev-
eral eco-zones in India (tropical shrub land), Vietnam
(trop moist deciduous forest), Myanmar (trop moist
deciduous forest) and Thailand (tropical dry forest).
For EFs from other land uses, we found most high
values in the tropical rainforest and tropical mountain
systems of Indonesia and Malaysia, with some hot-
spots in the tropical rainforest of Liberia, Brazil
andDRC.

Aggregated EFs at the continental level (figure 5,
left; table S3.1) showed that continental EFs for all fol-
low-up land uses are lowest in the African region
(8–49 Mg C ha−1). The highest continental EFs could
be found in the Asian region (67–118 Mg C ha−1),
while continental EFs for Latin America were posi-
tioned in the middle (74–96 Mg C ha−1). Continental
EFs for small-scale croplands were higher than for pas-
ture and large-scale cropland in all continents and
higher than other land use in Africa and Asia. This
same pattern can be observed across the eco-zones in
Africa, andmost of the eco-zones in Latin America. In
the tropical dry forest of Latin America small-scale
crop has the lowest EF, and in the tropical mountain
system it has a lower EF compared to pasture. In Asia,
eco-zone level EFs for other land use are more similar
to, or in the tropical dry forest higher than, small-scale
crop EFs. No clear pattern emerged for pasture, large-
scale crop and other land use EFs on the eco-zone
level. For all continents, EFs for all land uses tend to be
higher in the tropical rainforest and the tropical
mountain systems.

In Asia and Latin America, the percentage carbon
lost (figure 5, right; table S3.2) tended to bemore com-
parable across follow-up land uses and eco-zones than
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Figure 3.Country levelmean carbon stock difference (MgCha−1) of converted forests compared tomean carbon stock of all forests in
the country, per follow-up land use. All land uses is the combination of pasture, large-scale crop, small-scale cropland, other land use
and tree crop. The boxplot shows themedian (black bandnear themiddle), the 25th (Q1) and 75th (Q3) percentile (the bottom and
top of the box, respectively). The end of the upperwhiskers is located atQ3+1.5 IQR,whereas the lower whisker is located atQ1
−1.5 IQR,with IQR=Interquartile range. Black dots are suspected outliers.Mean carbon stock differences values per follow-up land
use are denotedwith a red dot.

Table 4.Mean carbon stock estimates (MgCha−1) forfive follow-up land uses, aggregated to continental and eco-zone levels. Values are
mean (standard error). Any twomeans sharing the same letters within a region are not significantly different (p<0.05) according to a
Permutation Test with 1000 iterations. For example, for Africa (Continent), themean carbon stock estimate of ‘Pasture’ is significantly
different from themean carbon stock estimate of ‘Other land use’ (donot share same letter), but is not significantly different from themean
carbon stock estimate of ‘Large-scale cropland’ (share same letter).

Region Pasture Large-scale cropland Small-scale cropland Other land use

Continent Africa 2 (2)a 2 (2) ab 5 (9) ab 3 (4) b

L. America 3 (4) a 3 (4) a 7 (6) b 6 (6) b

Asia 3 (2) a 2 (1) a 7 (5) b 8 (6) b

Tropical rainforest Africa — — 6 (14) a 5 (9)* a

L. America 4 (4) 2 (2) 7 (6) a 7 (7) a

Asia 4 (1)* a — 9 (5) a 8 (6) a

Tropicalmoist deciduous forest Africa 1 (2) a 2 (3)* ab 3 (3) b 3 (4) ab

L. America 2 (3) 4 (5) a 7 (5) a 7 (6) a

Asia 2 (1)* a 2 (2)* a 3 (2) a 4 (4) a

Tropical dry forest Africa 1 (2) a 2 (1)* ab 3 (3) bc 2 (3) ac

L. America 2 (2) a 2 (1) a 1 (1)* a 4 (4) a

Asia 5 (4)* a 2 (1)* a 4 (6) a 6 (8) a

Tropicalmountain system Africa 2 (2) a 0 (0)* ab 10 (10) ab 7 (4)* b

L. America 8 (7) a 3 (1)* a 8 (8) a 4 (5) a

Asia — — 9 (5) a 8 (6) a

Tropical shrub land Africa 0 (0) a — 1 (1) ab 2 (2) b

Asia 1 (1)* a — 4 (2)* a —

Subtropical humid forest L. America 7 (3) a 4 (3) a — 14 (8)*

Subtropicalmountain system L. America 2 (2)* a — — 2 (2)* a

*Less than ten sample units present.

9

Environ. Res. Lett. 14 (2019) 094022



EF estimates. In Africa, the percentage of carbon lost
was generally lower than in Asia and Latin America,
and therewasmore variability.

Country-level EFs and percentage of Carbon lost
can be found in tables S3.3 and S3.4.

4.Discussion

Our results show that agriculture was the dominant
land use following deforestation between 1990 and
2000, but the dominance of specific agricultural land

uses differed per continent. The findings for Latin
America and for South East Asia are in line with
previous studies that identified large-scale agriculture,
increasingly producing for international markets (cat-
tle ranching, soybean farming and oil palm planta-
tions), as the main driver of deforestation since the
1990s (Geist and Lambin 2002, Rudel et al 2009,
Boucher et al 2011, Romijn et al 2013, Stibig et al
2014). In contrast, deforestation in most of Africa is
still largely due to small-scale agriculture (DeFries et al
2010, Fisher 2010, Hosonuma et al 2012, Bodart et al
2013). Small-scale agriculture is also an important

Figure 4. Spatial distribution of emission factors (MgCha−1) per continent and follow-up land use.
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Figure 5.Emission factor and percentage carbon loss per follow-up land use (All land uses is combination of pasture, small-scale crop,
large-scale crop and other land use), aggregated at continent and eco-zone level (All values can be found in tables S2.1 and S2.2 in the
supporting information). Error bars represent standard deviations of themean.Note: eco-zones in Latin America differ fromAsia and
Africa (x-axis).
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factor in deforestation inCentral America, the Andean
region, and parts of Asia. A recent global study
considering a few broad types of deforestation drivers
(e.g. commodity-driven, shifting agriculture, wild-
fires) found a similar dominance of commodity-
driven deforestation in Latin America and Southeast
Asia, and of smaller-scale (shifting) agriculture in
Africa (Curtis et al 2018).

Other land uses made up a considerable (>30%)
part of deforested areas in Indonesia, Lao PDR and
Cambodia. In Indonesia, this other land use mainly
consisted of shrublands where no specific human
activity could be identified. In the lowlands of Indone-
sia, this could partly be a consequence of the misuse of
subsidies for establishing plantations (Romijn et al
2013). In the highlands of Sumatra and Borneo and in
montane mainland South East Asia, these shrublands
are more likely to be part of swidden landscapes (Fox
et al 2014,Mertz 2009). In Lao PDR andCambodia the
other land use appeared to be linked to subsistence
activities as well. Similarly, part of the other land use
following deforestation in African countries could be
found around villages, where fuelwood collection,
grazing and fire could have caused a reduction in tree
cover or a change in land use. Visual interpretation of
satellite imagery is limited in its ability to identify these
small-scale anthropogenic activities. In addition,
deforestation areas could be under- or over-estimated
in the African tropical dry forests as it is particularly
difficult to map areas of open woodlands. More speci-
fically, at low levels of tree cover densities (<30% tree
cover), the distinction between forest (>10% tree
cover) and other wooded land (5%–10% tree cover) is
difficult to determine, which can cause errors in iden-
tifying dry forests (Lambin 1999, FAO and JRC 2012,
Keenan et al 2015, Bastin et al 2017).

In Latin America the main drivers of deforestation
are clearing for pastures and for large-scale crops such
as soybean. Forest clearing formechanised agriculture,
associated with large-scale croplands, typically
involves a more thorough removal of biomass than
clearing for pasture and small-scale agriculture
(Houghton 2012). Whether forest conversion to large-
scale cropland or to pasture and small-scale agri-
culture has a higher emission factor depends mostly
on the initial biomass of the forest. In Brazil, for exam-
ple, forest conversion to pasture mostly occurs at the
forest frontier where forests have higher carbon den-
sities than forests in Mato Grosso State where large-
scale cropland expansion mostly occurs (figure 3). In
contrast, in Paraguay the EF for large-scale cropland is
more than double that of pasture (table S3.3). Here,
cropland expansion occurs in the tropicalmoist decid-
uous forest while pasture expansion mostly occurs in
the lower biomass tropical dry forests. In the Latin
American tropical rainforest eco-zone, small scale
cropland often occurs in remote places with dense for-
ests and larger-scale cropland occurs more in acces-
sible areas with lower density forests (figure 4). The

dynamics are different in the tropical dry forest eco-
zone where forest clearing for small-scale cropland
mostly occurs in the lower biomass dry forests ofMex-
ico, and forest clearing for large-scale cropland in Bra-
zil, Bolivia and Argentina. In Asia and Africa there is
less difference between the EFs of the different forest
conversions.

Our results show that carbon stocks of forests
averaged over all sample units within an eco-zone are
generally higher than the carbon stock of those forests
that were cleared, for example for forest converted to
pasture at the continental scale (table 3). This indicates
that mean carbon stocks across an eco-zone do not
always accurately represent the carbon stock of forest
areas that have undergone change within that eco-
zone. The use of eco-zone mean carbon stocks would
introduce substantial bias (overestimation) in esti-
mates of carbon emission from deforestation. How-
ever, considering that forest degradation is often a
precursor of deforestation and that their related emis-
sions are difficult to assess, using mean carbon stocks
of all forests allows emissions from forest degradation
to be captured in national estimates of carbon
emissions.

Within each sample unit, we used carbon stocks of
stable forests (i.e. forests remaining forests from 1990
to 2005) as a proxy for carbon stocks of forests that
were cleared between 1990 and 2000 within such sam-
ple unit. Althoughwithin a sample unit, cleared forests
might have had a different biomass content than stable
forests (e.g. a lower value in case of previous degrada-
tion), we lack time-series of spatially explicit AGB
values so we consider it to be the best proxy currently
available. This highlights the need for time-series of
spatially explicit data for both forest area change and
forest carbon stock analyses.

In general, large uncertainties are associated with
pan-tropical AGB maps, in particular in areas with few
field data. However, these maps can provide reasonable
carbon stock estimates when aggregated over large
regions (Mitchard et al 2013). Our estimates of mean
forest carbon stock of all forests within an eco-zone are
lower than IPCCTier 1 values (table S4.1), likely because
they are mainly derived from average values for mature
forest stands (Gibbs et al 2007). Our estimates are com-
parable to the alternative Tier 1 values by Langner et al
(2014), except for some African eco-zones where our
values were lower (table S4.1). A recent study focusing
onAGBinAfrican savannahs andwoodlands show simi-
lar lowAGB stocks (Bouvet et al 2018).

The IPCC Tier 1 default values assumed that all
biomass is cleared when preparing land for pasture
and cropland use. The default IPCC Tier 1 value for
carbon stock in AGB for non-woody annual crops
after one year is 5 Mg C ha−1, with a zero net accumu-
lation of biomass carbon stocks occurring in the crop-
ping system (table 5.9 in IPCC 2006). For grasslands,
the Tier 1 total (above- and below-ground) non-
woody biomass carbon stock ranges from 4.35 (dry
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tropics) to 8.05 (moist and wet tropics) Mg C ha−1

(table 6.4 in IPCC 2006, converted from dry matter to
C). The AGB map used in this study (Zarin et al 2016)
is primarily made for estimating and mapping AGB of
live woody vegetation in forests. While the IPCC pro-
vides Tier 1 estimates for the non-woody vegetation,
we provide estimates of the carbon stock of live woody
vegetation still present after deforestation. This indi-
cates that not all woody vegetation is cleared, or that
regrowth occurs. For example up to 24% of the forest
carbon stock can remain after forest conversion to
small-scale cropland in the tropical dry forest in Africa
(table S3.2). This study provides an opportunity to
refine the default IPPC values for annual crops (table
S5.1) and grassland (table S5.2).

Our EF estimates are based on historical data on
deforestation (1990–2000) and biomass (2000). A
study by De Sy et al (2015) illustrated that hotspots of
forest conversion by specific drivers change over time
and accordingly the key areas of deforestation change
to lower or higher biomass forests, which would influ-
ence the emission factors. While our emission factors
might be only representative for the time period stu-
died, our results also show that emission factors are
mainly determined by the initial forest carbon stock.
The percentages of carbon lost seem to be more
robust, and less dependent on initial forest biomass.
This offers opportunities for REDD+ countries to
generate local emission factors from our country or
eco-zone estimates of percentage of carbon lost (tables
S3.2 and S3.4). Countries should give preference to
up-to-date, region- and context-specific data, but in
absence of these data our estimates can provide an alter-
native. REDD+ countries can use good quality national
forest biomassmaps or inventory data to estimate initial
forest carbon stocks. Our percentage of carbon lost esti-
mates can then be applied to calculate emission factors
for specific follow-up land uses. If follow-up land use is
not known, we also provide estimates for all land use
combined (tables S3.2 andS3.4, All landuses).

Our study highlights that information on fate of
the land after forest conversion can be valuable for
REDD+ policy design and implementation. It pro-
vides more insight into the spatial dynamics of land-
use change and can help in attributing forest loss and
carbon emissions to human activities. In addition, the
co-location of data on forest loss, biomass and fate of
the land provides further opportunities to link follow-
up land use to other aspects such as fate of the carbon
and land use management practices. We recommend
that broader land use monitoring is integrated into
national REDD+ forestmonitoring.
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