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Abstract
Land use change in SouthAmerica,mainly deforestation, is a large source of anthropogenic CO2

emissions. Identifying and addressing the causes or drivers of anthropogenic forest change is
considered crucial for global climate changemitigation. Few countries however,monitor deforesta-
tion drivers in a systematicmanner. National-level quantitative spatially explicit information on
drivers is often lacking. This study quantifies proximate drivers of deforestation and related carbon
losses in SouthAmerica based on remote sensing time series in a systematic, spatially explicitmanner.
Deforestation areaswere derived from the 2010 global remote sensing survey of the Food and
Agricultural Organisation Forest Resource Assessment. To assess proximate drivers, land use
following deforestationwas assigned by visual interpretation of high-resolution satellite imagery. To
estimate gross carbon losses fromdeforestation, default Tier 1 biomass levels per country and eco-
zonewere used. Pasture was the dominant driver of forest area (71.2%) and related carbon loss
(71.6%) in SouthAmerica, followed by commercial cropland (14%and 12.1% respectively). Hotspots
of deforestation due to pasture occurred inNorthernArgentina,Western Paraguay, and along the arc
of deforestation in Brazil where they graduallymoved into higher biomass forests causing additional
carbon losses. Deforestation driven by commercial cropland increased in time, with hotspots
occurring in Brazil (MatoGrosso State), NorthernArgentina, Eastern Paraguay andCentral Bolivia.
Infrastructure, such as urban expansion and roads, contributed little as proximate drivers of forest
area loss (1.7%). Ourfindings contribute to the understanding of drivers of deforestation and related
carbon losses in SouthAmerica, and are comparable at the national, regional and continental level. In
addition, they support the development of national REDD+ interventions and forestmonitoring
systems, and provide valuable input for statistical analysis andmodelling of underlying drivers of
deforestation.

1. Introduction

Land use change, mainly deforestation, is the second
largest source of anthropogenic CO2 emissions, and
causes a net reduction of carbon storage in terrestrial
ecosystems as well as other environmental impacts
such as biodiversity loss (IPCC 2013). The vast
majority of land use change occurs in tropical regions,
withCentral and SouthAmerica having the highest net
emissions from land use change from the 1980s to

2000s (IPCC 2013). Reducing emissions from defor-
estation and forest degradation, and enhancing carbon
stocks (REDD+) in (sub−) tropical countries is thus
a necessary component of global climate change
mitigation. Within the REDD+ framework, partici-
pating countries are given incentives to develop
national strategies and implementation plans that
reduce emissions and enhance sinks from forests and
to invest in low carbon development pathways.
Identifying and addressing the causes or drivers of
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anthropogenic forest change is considered crucial
within the REDD+ framework (UNFCCC 2014), and
should be incorporated in national forest monitoring
systems.

Few countries, however, monitor deforestation
drivers in a systematic manner and national-level
quantitative spatially explicit information on drivers is
often lacking (De Sy et al 2012, Hosonuma et al 2012).
The distinction between proximate and underlying
drivers is important for assessment purposes. Prox-
imate or direct drivers of deforestation are human
activities that directly affect the loss of forests (Geist
and Lambin 2001), and can be assessed by linking for-
est area change to specific human activities and follow-
up land use (De Sy et al 2012). Remote sensing can
provide essential information on the intensity, type
and pattern of deforestation, and on the follow-up
land use in order to attribute deforestation to specific
human activities (Gibbs et al 2010, De Sy et al 2012,
GOFC-GOLD 2014). Statistical analysis and model-
ling of this information, in turn, can be useful for the
assessment of underlying drivers (Kissinger et al 2012)
which are complex interactions of social, political,
economic, technological and cultural forces (Geist and
Lambin 2001).

Forest loss and related carbon losses in South
America have been extensively studied from the con-
tinental to the (sub)national scale (DeFries et al 2002,
Baccini et al 2012, Eva et al 2012, Harris et al 2012,
Hansen et al 2013, Achard et al 2014, Beuchle
et al 2015, Velasco Gomez et al 2015) but the link to
specific proximate drivers is not made. Clark et al
(2012) and Graesser et al (2015) studied land use
change across the South American continent in a sys-
tematic manner with MODIS imagery which gives
some insight into drivers of deforestation. MODIS
imagery, however, cannot accurately detect small-
scale agricultural clearings (<25 ha) and infra-
structure expansion due to its low spatial resolution
(GOFC-GOLD 2014). Other research that links forest
loss or forest carbon emissions to drivers used aggre-
gated continental scale (Geist and Lambin 2002,Hoso-
numa et al 2012, Houghton 2012) or local scale data
(Morton et al 2006, Barona et al 2010, Clark et al 2010,
Müller et al 2012, 2014, Gibbs et al 2015). Several stu-
dies link overall deforestation rates directly to under-
lying drivers (DeFries et al 2010, Malingreau
et al 2012). Linking driver-specific deforestation rates
(e.g. agricultural expansion) to relevant underlying
drivers (e.g. agricultural commodity prices) can pro-
vide more insight into complex deforestation
pathways.

Although it is clear that agricultural expansion is
the main driver of deforestation in South America
(Geist and Lambin 2002, Gibbs et al 2010, Hosonuma
et al 2012, Houghton 2012), less is known about the
magnitude and the spatial and temporal distribution
of different types of agricultural and non-agricultural
drivers contributing to forest loss and related carbon

emissions. Gaining insight in spatiotemporal dynam-
ics is essential since drivers of forest loss vary from
region to region and change over time (Rudel
et al 2009, Boucher et al 2011).

Accordingly, our research aims to quantify prox-
imate drivers of deforestation, their spatiotemporal
dynamics and related carbon losses in South America
at continental and national scales using a comprehen-
sive, systematic remote sensing analysis. This new
dataset will provide insight into complex deforestation
pathways and be a valuable source of information for
international climate change mitigation and REDD+
monitoring strategies.

2.Data andmethods

The 2010 global Remote Sensing Survey of the United
Nations Food and Agricultural Organisation (FAO)
Forest Resource Assessment was used as input to
determine deforestation areas (section 2.1). To assess
proximate drivers, land use following deforestation
was assigned by visual interpretation of high-resolu-
tion satellite imagery (section 2.2). To estimate gross
carbon losses from deforestation, default Tier 1
biomass levels per country and eco-zone were used
(section 2.3).

2.1. Forest area loss
In a coordinated effort, the European Joint Research
Centre (JRC) and the FAO produced estimates of
forest land use change from 1990 to 2005 for the
Remote Sensing Survey of the Global Forest Resources
Assessment 2010 of FAO (FAO FRA-2010 RSS) (FAO
& JRC 2012). These estimates were based on a
systematic sampling design with sample units of
10×10 km centred on each degree latitude–long-
itude confluence point (Eva et al 2012, FAO &
JRC2012, Achard et al 2014).

Unfortunately the FAO FRA-2010 RSS currently
only covers a limited time period from 1990 to
2005. As mentioned in the introduction, other
deforestation datasets are available (e.g. Hansen
et al 2013) that provide wall-to-wall data extending
to 2010 or even later. The FAO FRA-2010 RSS,
however, employs a land use classification that is
better suited for assessing drivers than a land cover
classification. In addition, the FAO FRA-2010 RSS is
a global study with consistent methods and time
series that could be extended to include more recent
periods. Despite the time period limitation, and in
view of the paucity of quantitative data on defor-
estation drivers and related carbon losses, this study
provides an unique and relevant overview of the dri-
vers of deforestation in South America, as well as
showing that this is achievable with a sample-based
time series approach.

We briefly describe the methodology of the FAO
FRA-2010 RSS dataset (FAO & JRC 2012), because
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it served as input data for our study. Medium reso-
lution satellite imagery (mainly Landsat) was
acquired for each sample unit, as close as possible
to reference years 1990, 2000 and 2005. After pre-
processing, the satellite imagery was used in an
automated multi-date image segmentation to sub-
divide the sample unit (10 000 ha) into delineated
areas (polygons) with similar spectral and structural
attributes. The target minimum mapping unit was
5 ha. On the segmented imagery, a supervised auto-
mated land cover classification was carried out,
which later was converted to a land use classifica-
tion with the help of expert human interpretation.
The main land use classes were Forest, Other wooded
land, and Other land, which are based on FAO for-
est definitions (FAO 2010). Areas lacking data due
to clouds, poor satellite coverage or low quality
imagery in any of the reference years were con-
sidered an unbiased loss of information and were
not analysed. This sample grid provided 1542 sam-
ple units in South America, of which 1392 sample
units had data for all years and were consequently
processed (figure 1).

2.2. Follow-up land use
Land use following a deforestation event was assigned
a more detailed land use class, i.e. follow-up land use
class, as a proxy for the proximate cause of change.
Assessing land use is more challenging than assessing
land cover, as factors other than spectral reflectance
are important. So, expert human interpretation and
relatively fine-scale satellite imagery are required to
interpret the proximate causes of deforestation. To
assign follow-up land use in this study, we used
parameters such as land cover, the presence of certain
features within or near changed areas (e.g. crop rows,
watering holes, fences) and to a limited extent the
spatial context and location of change (e.g. distance to
settlements, concessions).

Table 1 gives an overview of the follow-up land use
classes and their descriptions, that we used as proxies
for the proximate deforestation driver. These land use
classes are based on the proximate deforestation dri-
vers as described in Hosonuma et al (2012) i.e. agri-
cultural expansion, mining, infrastructural and urban
expansion. The class ‘other land use’ was added for
deforested areas where no clear human activity could

Figure 1. Location of sample units (FAO& JRC 2012), and FAOecological zones (FAO2001) in SouthAmerica.
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be distinguished. The ‘other land use’ subclasses are
chosen in such a way that our classification could be
translated to IPCC land categories (e.g. wetlands,
grasslands) (IPCC 2013) and FAO land use definitions
(e.g. other wooded land) (FAO 2010). The water class
was added to account for forest loss due to inundation
by lakes,meandering rivers and dam reservoirs.

We have used several key criteria to classify land
uses. Cropland can be detected by plough lines, recti-
linear shapes, and nearby roads and infrastructure
(Clark et al 2010).We used field size as a proxy for agri-
cultural development and mechanisation (Kuem-
merle et al 2013, Fritz et al 2015). We classified
cropland with very small to small fields (<2 ha) as
smallholder cropland, and cropland with medium to
large fields (>2 ha) as commercial cropland (>2 ha).
Tree crops can be recognised by perennial vegetation
and the regular spacing of the tree plants (Clark
et al 2010). Pasture can be distinguished by trails and
watering holes, and is usually more heterogeneous in
colour and texture than cropland (Clark et al 2010).

In order to achieve a detailed follow-up land use
classification, we performed the following steps:

(1).We selected those polygons of each sample unit
within the FAO FRA-2010 RSS dataset that were
deforested, either in the interval between 1990
and 2000 or 2000 and 2005 according to the FAO
FRA-2010 RSS classification, i.e. changed from
Forest toOther wooded land or toOther land.

(2). Each of these deforested polygons was assigned a
single follow-up land use class (table 1) by means
of visual interpretation by an expert. If more than
one land use was present, themost dominant one
in terms of area or human activity (e.g. a road
with shrubs on the side is assigned road) was
chosen. For the visual interpretation a variety of
satellite imagery was used such as Landsat, Google
Earth imagery (Google Earth 2015) and ESRI
world imagery basemaps. For the Brazilian Ama-
zon, Terraclass 2008 data (Coutinho et al 2013)
was used to help with the interpretation. We used
satellite imagery acquired as close as possible to the
deforestation period (e.g. 2000or 2005).

(3). In addition to follow-up land use, the source and
year of the satellite imagery used for the inter-
pretation (e.g. Google Earth 2009) and the
confidence (low—medium—high) in the inter-
pretationwas documented.

(4). For the areas with low confidence, e.g. due to low
resolution imagery, land use and remote sensing
expertswith local knowledgewere consulted. These
experts were provided with the follow-up land use
classification and descriptions in order to classify
the areas based on their local knowledge, and
additional sources available to them such as high
resolution satellite imagery and landusemaps.

(5). Finally, all areas were double checked, and if
necessary corrected for errors and consistency.

Table 1. Follow-up land use classes and their description.

Follow-up land use Description

Mixed agriculture Mix of agricultural land uses

Commercial crop Land under cultivation for crops, characterised bymedium (2–20 ha) to large (>20 ha)field
sizes

Agriculture Smallholder crop Land under cultivation for crops, characterised by very small (<0.5 ha) to smallfield sizes

(0.5–2 ha)
Tree crops Miscellaneous tree crops (e.g. coffee, palm trees), orchards and groves
Pasture Land used predominantly for grazing; in eithermanaged/cultivated (pastures) or natural

(grazing land) setting; includes grazedwoodlands

Urban and Settlements Urban, settlements and other residential areas

Infrastructure Roads and built-up Roads, built-up areas and other transport, industrial and commercial infrastructures

Mining Land used for extractive subsurface and surfacemining activities (e.g. underground and strip
mines, quarries and gravel pits), including all associated surface infrastructure

Other land use (general) All land that is not classified as forest, agriculture, infrastructure,mining andwater

Bare land Barren land (exposed soil, sand, or rocks)
Other land use Otherwooded land Land not classified as forest, spanningmore than 0.5 ha; with trees higher than 5 mand

canopy cover of 5%–10%, or trees able to reach these thresholds in situ, or with a com-

bined cover of shrubs, bushes and trees above 10%. It does not include land that is pre-

dominantly under agricultural or urban land use (FAO2010)
Grass and herbaceous Land coveredwith (natural)herbaceous vegetation or grasses
Wetlands Areas of natural vegetation growing in shallowwater or seasonallyflooded environments.

This category includesMarshes, swamps, and bogs

Water Natural (river, lake etc) orman-madewaterbodies (e.g. reservoirs)

Unknown land use All land that cannot be classified (e.g. due to low resolution imagery)
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This means each forest loss area has been looked
at least twice by one ormore experts.

In the end, 77.8% of follow-up land use classifica-
tion was assigned with high confidence, 17.6% with
medium confidence and only 4.6% with low con-
fidence. In general, small-scale land uses, such as small-
holder cropland, were classified with less confidence
due to their smaller scale and because these land uses
occur more in locations with higher cloud cover and
with lower availability of high resolution imagery
(Andean countries, Amazon rainforest). In addition,
the class ‘other land use’ also had a higher portion of
low confidence classification since it is not always possi-
ble to assess whether these areas are used for agri-
culture. For all land uses, the confidence level was also
influenced by the date of the available imagery.

2.3. Carbon losses
Gross carbon loss per sample unit was calculated using
spatially explicit forest biomass information. A recent
study by Langner et al (2014) combined a global forest
mask derived from the Globcover-2009 map (Bon-
temps et al 2011), FAO ecological zones (eco-zones;
FAO 2001) and the pan-tropical above ground bio-
mass (AGB) datasets of Saatchi (Saatchi et al 2011) and
Baccini (Baccini et al 2012) to derive mean AGB levels
in forests (for intact, non-intact and overall forest) per
eco-zone and country as an alternative to IPCC Tier 1
values.

We used the country eco-zone AGB forest values
derived from the combined Saatchi and Baccini AGB
maps (table 3 in supplementary information of
Langner et al 2014). We used AGB values for the over-
all forest category since we did not have information
on whether the deforested area had intact or non-
intact forest. For those AGB forest values where the
number of samples per eco-zone was too small, we
used the combined AGB values of that eco-zone at the
continental (South America) or tropical scale. If these
AGB values were also not present we used IPCC Tier 1
AGB values for America (IPCC 2006). For Argentina
and Chile, which were not included in Langner et al
(2014), we used the same procedure. Table 2 provides
an overview of the AGB values per country eco-zone
used in our study.

We derived total biomass from AGB by applying
the equation (1)used by Saatchi et al (2011):

Total Biomass AGB 0.489 AGB . 10.89 ( )*= +

Total carbon was considered to be 50% of total
biomass as in Achard et al (2014). We considered only
the maximum potential loss of carbon stock from
deforestation, assuming a carbon stock of zero in
potential follow-up land uses, that could be emitted to
the atmosphere over a long time period. We did not
account for soil carbon loss.

2.4. Aggregation to regional scale
Deforestation and related carbon losses per driver
were scaled up from the sample to the continental and
national scales using a statistical extrapolation similar
to FRA-2010 RSS (FAO & JRC 2012). Cloudy areas
were considered an unbiased loss of data, with the
assumption that cloudy areas had the same proportion
of land uses as cloud-free areas within a single sample
unit. This was accomplished by considering the ratio
of forest area or carbon loss per driver proportional to
the ‘visible land’ area of the sample unit. The ‘visible
land’ area was the full sample unit area (100 km2)
minus cloudy and ‘permanent water’ areas (i.e. sea or
inlandwater in all considered years).

Estimates of forest area and carbon losses per driver
for each sample unit for the two periods (1990–2000
and 2000–2005) were annualised based on the acquisi-
tion dates of the imagery for that sample unit, with the
assumption that the change rates were constant during
the two time intervals. The average time length across
all sample units was 11.9 years for the 1990–2000 epoch
and 4.9 years for the 2000–2005 epoch.

Each sample unit was assigned a weight (wi) (2),
equal to the cosine of its latitude (coslati), because the
actual area represented by a sample unit decreased
with latitude due to the curvature of Earth:

w
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The proportions of forest area changes and carbon
losses per driver were extrapolated to a given region
(the full continent or one specific country) using
the Horvitz–Thompson direct estimator (Särndal
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and where xic is the proportion of forest cover change
or carbon loss in the ith sample unit and wi is the
weight of the ith sample unit. The total area of change
or total loss of carbon for this region (Driverregion) is
then obtained from:

A xDriver , 5cregion ¯ ( )= ´

where A is the total area of the region (excluding
permanent water).

We used the usual variance estimation of themean
for this systematic sampling as follows:
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The standard error (SE) is then calculated as:
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Table 2.AGBmean forest values (t ha−1) per eco-zone and country based on combined Saatchi and Baccini datasets (unless otherwise indicated); Source: Langner et al (2014), table 3 in their supplementary information.

Eco-zone Argentina Bolivia Brazil Chile Colombia Ecuador FrenchGuiana Guyana Paraguay Peru Suriname Uruguay Venezuela

Tropical rainforest — 211 239 — 237 237 280 269 79 276 273 — 250

Tropicalmoist deciduous forest 123a 180 98 — 88 123a — 222 80 — 252 — 154

Tropical dry forest 79a 95 68 — 105 116 — — 68 79a — — 106

Tropicalmountain system 195a 199 126 — 162 187 — 280 — 208 — — 240

Subtropical humid forest 110a — 110 — — — — — — — — 110a —

Subtropical dry forest — — — 57b — — — — — — — — —

Subtropical steppe 80c — — — — — — — — — — — —

Temperatemountain system 130c — — — — — — — — — — — —

Temperate oceanic forest — — — 180c — — — — — — — — —

a Continental (America) value (Langner et al 2014, table 2a in their supplementary information).
b Global value (Langner et al 2014, table 1 in their supplementary information).
c IPCC continental (America) value.
—Eco-zone and country combinations that do not exist or arewithout forest loss.
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The SE represents only the sampling error. Coun-
tries or states with a SE of more than 35% for forest
area and carbon losses estimates were not reported at
the national scale (i.e. French Guyana, Guyana, Ecua-
dor andChile).

3. Results

3.1.Deforestation and carbon losses per driver from
1990 to 2005
We estimated that total deforested area and related
gross carbon losses in SouthAmerica from1990 to 2005
reached 57.7 million ha and 6 460 Tg C, respectively
(table 3). Agriculture was the dominant follow-up land
use (88.5%), in particular pasture (71.2%) and to a
lesser extent commercial cropland (14.0%). In the non-
agricultural category, other land use was the largest
driver (6.5%). This class can be further subdivided in
other wooded land (4.4%), wetlands (1.4%), grass and
herbaceous (0.6%) and bare land (0.1%). The contrib-
ution of smallholder cropland (2.0%), infrastructure
(1.7%) and water (3.0%) was small. Within the
infrastructure class, urban and settlements accounted
for 0.9%, roads and built-up areas for 0.6% andmining
for 0.2% of deforestation. The water driver can be
divided into natural (1.3%) and man-made water
bodies (1.8%). Unknown land use only represented a
small fraction (0.2%)of total deforestation.

The spatially explicit nature of our dataset shows
the distribution of follow-up land use across the con-
tinent (figure 2(a)). The Brazilian arc of deforestation
was dominated by pasture expansion, except for a
commercial crop agriculture cluster in Mato Grosso
State. Considerable deforestation, mainly due to the
expansion of pasture, occurred in the Brazilian Panta-
nal and Cerrado ecoregions. Toward the Atlantic
coast, in the Mata Atlântica ecoregion, the follow-up
land use became more diverse with a mix of pasture,
commercial cropland and tree crops. Pasture expan-
sion was also an important driver of deforestation in

the Western Paraguayan and Argentinean Chaco.
Commercial crop expansion was prevalent in Eastern
Paraguay, Central Bolivia (around La Paz) and North-
ern Argentina; while smallholder crop expansion
occurredmostly in the Andean region (Peru, Ecuador,
Colombia, Venezuela andBolivia).

Forest biomass levels in East Brazil, Paraguay and
Argentina were much lower than in the Brazilian
Amazon (figure 2(b)). This influenced the relative
contribution of follow-up land uses for forest carbon
losses as compared to deforested area (table 3). For
example, commercial crop agriculture proportionally
contributed more to deforested area (14.0%) than to
forest carbon losses (12.1%) indicating that this fol-
low-up land use, as well as tree crops, occurred more
in lower forest biomass eco-zones as compared to pas-
ture, mixed and smallholder crop agriculture, water
and infrastructure.

Deforestation drivers at the national level varied in
their contribution to deforestation (figure 3, for more
detail see table A1 in the appendix). Pasture expansion
caused at least 35% or more of forest loss in all
countries except in Peru (19.9%) where smallholder
cropland (41.9%) was a more dominant driver.
In Argentina deforestation caused by commercial
cropland (43.4%) was almost as dominant as pasture
driven deforestation (44.6%). Commercial crop
expansion could also be found in Paraguay (25.5%)
and Bolivia (27.2%), while in Colombia smallholder
crop and mixed agriculture (23.6% together) was
more important for deforestation. In Bolivia one fifth
(20.0%) of deforestation was followed up by other
land use, mostly wetlands (13.4%) and other wooded
land (6.0%). For other land use in Peru (16.2%)most
was other wooded land (8.9%) and wetlands (7.3%).
In Colombia (12.7%) and Venezuela (13.7%) other
land use, mainly other wooded land also played a con-
siderable role in deforestation. In Peru infrastructure
was a relatively large driver (5.6%) compared to the
other countries, due to mining activities (2.0%) and
substantial urban, roads and built-up development

Table 3.Estimates of deforested area (103 ha (SE) and per cent of total) and related carbon loss (TgC (SE) and per cent of total) per
follow-up land use from1990 to 2005.

Area Carbon loss

Follow-up land use 103 ha (SE) % TgC (SE) %

Mixed agriculture 470 (233) 0.8 57 (32) 0.9

Smallholder crop 1 168 (272) 2.0 173 (42) 2.7

Commercial crop 8 100 (1463) 14.0 782 (162) 12.1

Tree crops 243 (75) 0.4 20 (6) 0.3

Pasture 41 118 (3244) 71.2 4 624 (431) 71.6

Agriculture total 51 099 (3618) 88.5 5 657 (472) 87.6

Infrastructure 985 (346) 1.7 124 (52) 1.9

Other land use 3 770 (517) 6.5 433 (65) 6.7

Water 1 748 (543) 3.0 228 (79) 3.5

Unknown land use 131 (108) 0.2 18 (15) 0.3

Other total 6 634 (897) 11.5 802 (123) 12.4

Total 57 733 (3837) 100 6 460 (501) 100
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(3.7%). Water as a follow-up land use contributed
considerably to deforestation in Venezuela (38.2%)
due to two large dam projects. In Peru (14.2%) and
Bolivia (5.9%) deforestation followed up by water was

the result of natural processes such as meandering
rivers.

Brazil emitted the most carbon from 1990 to 2005
(4372 Tg C), followed by Bolivia (488 TgC), Argentina

Figure 2. (a) Forest area loss (ha) and (b) related forest carbon losses (MgC) per follow-up land use from1990 to 2005, in South
America.

Figure 3.Area proportion of deforestation driver from1990 to 2005 (%) at the national scale.
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(297 Tg C) and Colombia (289 Tg C). Paraguay
(179 Tg C), Venezuela (174 Tg C) and Peru (170 Tg C)
had less forest carbon losses in the same period (table
A2 in appendix).

3.2. Trends in annual deforestation and carbon
losses per driver from1990 to 2000 and 2000 to 2005
Annual deforestation increased from 3.62 to 4.46
million ha yr−1 between the periods 1990–2000 and
2000–2005, while the related carbon losses increased
from 0.41 to 0.50 Pg C yr−1 (table 4). The increase in
carbon losses was partly driven by an increase of forest
area loss due to commercial cropland, pasture and
other land use. Water, mixed and smallholder crop
agriculture, on the other hand, decreased as drivers of
deforestation. Not all the increase in carbon losses can
be attributed to an increase in forest area loss alone.
Pasture (+9.17 Tg C yr−1) and commercial crop
expansion (+8.79 TgC yr−1) caused additional carbon
losses by occurring more in higher forest biomass eco-
zones in the 2nd period, only minimally countered by
other drivers occurring more in lower forest biomass
eco-zones (table 4).

Clearly, the spatial distribution of hotspots of
deforestation and their change in time has an influence
on forest carbon losses. Moving hotspots of the two
main deforestation drivers, crop agriculture (com-
mercial and smallholder) (figure 4(a)) and pasture
(figure 4(b)), illustrate this effect. Pasture expansion in
Brazil occurredmore and deeper in the Amazon (espe-
cially Rondônia and Pará States) in the 2nd period, and
less in lower forest biomass ecoregions of the Cerrado
and Mata Atlântica. In Paraguay, pasture expansion
into forests moved away from urbanized areas in the
first period tomainly the Alto Chaco region in the sec-
ond period. Hot spots of crop expansion occurred in
Mato Grosso State and the lowlands around Santa
Cruz in Bolivia mainly in the 2nd period, while in
Southern Paraguay crop expansion moved from Alto
Paraná Department to central Paraguay. In Peru we

see both crop and pasture related deforestation occur-
ring deeper in the Amazon in the second period. In
Northern Argentina, pasture and crop expansion
occurredmainly near important highways.

4.Discussion

In this study we quantified proximate drivers of
deforestation and related carbon losses in South
America between 1990 and 2005. Previous estimates
of deforestation ranged from 3.74 to 4.09 million
ha yr−1 for the 1990s, and 3.28 to 4.87 million ha yr−1

for (part of) the 2000s (DeFries et al 2002, Hansen
et al 2008, 2010, Eva et al 2012, Harris et al 2012,
Achard et al 2014, FAO 2015). Previous estimates for
carbon losses from deforestation ranged from 306 to
698 Pg C y−1 for the 1990s, and 322 to 845 Pg C yr−1

for (part of) the 2000s (DeFries et al 2002, Baccini
et al 2012, Eva et al 2012, Harris et al 2012,
Houghton 2012, Achard et al 2014, Tyukavina
et al 2015). Our estimates of deforestation and related
carbon emissions are of similar magnitude, but
comparisons between studies are difficult due to
differences in methodology, forest definition, consid-
ered time frame and region (Keenan et al 2015). The
latter is also the case for previous studies (Hosonuma
et al 2012, Houghton 2012) on proximate drivers of
deforestation.

Agricultural expansion, in particular pasture, was
the most dominant driver of deforestation in South
America. Gross carbon losses from forest conversion
to pasture were 4 624 Tg C from 1990 to 2005. In the
same time frame, carbon losses amounted to 782 Tg C
for commercial crop agriculture and 173 Tg C for
smallholder crop agriculture. Before the 1990s defor-
estation was mostly attributed to shifting cultivators
and smallholder colonists (Rudel et al 2009). More
recent decades saw the rise of large-scale agribusi-
nesses, increasingly producing for international mar-
kets, as the main agents of deforestation (Rudel 2007,

Table 4.Estimates of deforested area (103 ha yr−1 (SE)) and related carbon loss (TgC yr−1 (SE)) per follow-up land use for
1990–2000 and 2000–2005, and the change in carbon loss (TgC yr−1) in the second period additional to the change in forest
area loss.

1990–2000 2000–2005

Follow-up land use Area Carbon loss Area Carbon loss Additional change in carbon loss

Mixed agriculture 36 (21) 5 (3) 25 (12) 2 (1) −0.78

Smallholder crop 85 (22) 13 (3) 58 (13) 9 (2) 0.02

Commercial crop 409 (84) 37 (7) 802 (180) 82 (21) 8.79

Tree crops 13 (3) 1 (0) 22 (11) 2 (1) −0.46

Pasture 2 642 (224) 295 (30) 3 062 (307) 351 (39) 9.17

Agriculture total 3186 (244) 351 (31) 3969 (359) 445 (45) 16.73

Infrastructure 64 (25) 8 (4) 62 (17) 7 (2) −0.31

Other land use 232 (38) 27 (5) 324 (60) 36 (6) −2.07

Water 128 (47) 18 (7) 93 (42) 11 (4) −2.33

Unknown land use 9 (7) 1 (1) 9 (7) 1 (1) −0.04

Other total 433 (73) 54 (10) 489 (77) 55 (8) −4.75

Total 3 619 (261) 405 (34) 4 458 (382) 500 (48) 11.98
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Rudel et al 2009, Pacheco and Poccard-Chapuis 2012).
Our data confirmed this, especially in Brazil, Argen-
tina, Paraguay and Bolivia where large ranches and
commercial crop agriculture were the main drivers. In
the Andean countries (Peru, Colombia and Vene-
zuela) smallholder and mixed agriculture were still
important drivers of deforestation.

Our study shows that the annual rate of deforesta-
tion driven by commercial crops doubled in the early
2000s compared to the 1990s. Although much of the
increase in deforestation in the early 2000s could be
attributed to commercial crop expansion, this driver
contributed to only 14% of overall deforestation in
South America. Our study identified hotspots of forest
conversion for crop agriculture in Mato Grosso State
(Brazil), Bolivia, Argentina and Paraguay. Several stu-
dies showed that the expansion of commercial crops
(e.g. soybean) increased substantially in these regions
(Morton et al 2006, Macedo et al 2012, Müller
et al 2012, Graesser et al 2015). A large part of this
expansion, however, was conversion of pasture and
not forests (Graesser et al 2015). Even so, crop expan-
sion still places direct pressure on forests (Morton
et al 2006) and can be an indirect driver of land use
change by pushing pasture lands forward into the for-
est frontier (Nepstad et al 2006, Barona et al 2010,

Arima et al 2011). These dynamics changed after 2005
when deforestation slowed down in the Amazon, par-
ticularly inMato Grosso State, coinciding with a fall in
crop commodity prices and the implementation of
policy measures such as improved monitoring and
enforcement, and other control actions (Macedo
et al 2012,Malingreau et al 2012, Gibbs et al 2015).

Hotspots of pasture- and crop-driven deforesta-
tion moved into higher forest biomass eco-zones in
the early 2000s which caused additional carbon losses.
Efforts to reduce carbon emissions might be in vain
when countries only concentrate on reducing the
deforested area without taking into account variations
in forest biomass. However, beyond carbon emissions,
the environmental impact (e.g. biodiversity loss) of
high deforestation rates in low-carbon biomes such as
the Cerrado in Brazil and the Chaco in Paraguay is
considerable. This emphasises the importance of spa-
tial and temporal information, not only on drivers of
deforestation but also on biodiversity and other safe-
guards, in designing effective REDD+ interventions.
In this study we used mean forest biomass values per
eco-zone to estimate carbon losses as a simple and
conservative approach (Langner et al 2014). In reality,
however, there are gradations of forest biomass within
eco-zones (Saatchi et al 2011, Baccini et al 2012)which

Figure 4.Changes in annual rate of deforestation (ha yr−1) followed up by crop agriculture (a) and pasture (b) between the periods
1990–2000 and 2000–2005, in SouthAmerica.
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might influence the spatial and temporal dynamics of
carbon losses fromdifferent drivers.

Infrastructure, including urban expansion and
roads, contributed little (1.7%) to deforestation as a
direct driver. As an indirect driver, however, urbanisa-
tion can contribute significantly to deforestation
because it changes consumption patterns and increa-
ses the demand for agricultural products (DeFries
et al 2010). Better road infrastructure in the Amazon
opened up the forest frontier and expanded themarket
for cattle (Rudel 2007). In Peru, infrastructure was a
relatively important driver, mostly due to (illegal)
mining activities (2.0% of deforestation) which in
addition to forest carbon losses also causes other
environmental impacts (Swenson et al 2011, Asner
et al 2013). The example of Venezuela shows that large
infrastructure projects, such as dams, can make a sub-
stantial contribution (37.8% of deforestation) to
national forest carbon emissions.

Deforestation drivers and their relative impor-
tance on the national level emphasise the need to
understand drivers to design effective REDD+ poli-
cies. Countries have a variety of policy- and incentive-
based interventions at their disposal (Angelsen and
Brockhaus 2009, Kissinger et al 2012) to affect local to
national drivers, which ideally should be adapted to
the characteristics of these drivers. For example, coun-
tries mostly affected by deforestation due to commer-
cial agriculture might opt for different interventions
than countries mostly affected by deforestation due to
smallholder agriculture. Most drivers of deforestation
originate outside the forest sector which indicates that
REDD+ interventions should include non-forest sec-
tors such as the agricultural, urban andmining sectors
instead of only focusing on forest interventions such as
sustainable forest management. Salvini et al (2014)
found that most countries focus more on forest degra-
dation than on deforestation interventions, and that
countries with higher quality data on drivers include
more non-forest sector interventions (e.g. agricultural
intensification) in their REDD+ readiness documents.
Clearly, REDD+ countries are struggling with design-
ing effective REDD+ policy interventions partly due
to limited understanding of their deforestation
drivers.

Unfortunately, our data only covers the timeframe
between 1990 and 2005. This limits the applicability
for designing up-to-date REDD+ strategies since, as
discussed above, the drivers and processes of defor-
estation in South America have undergone changes
after 2005. An important aspect to consider for further
research is the influence of the temporal resolution on
the follow-up land use. High resolution imagery is
usually only available for few points in time within the
1990–2005 timeframe. The immediate follow-up land
uses might be missed if a land use transition (e.g.

pasture to crop) has occurred between the deforesta-
tion event and the closest available high-resolution
imagery. In contrast, some land uses only become
apparent after some time has passed (e.g. cleared land
for urban development). Most REDD+ countries,
however, have low capacities for forest monitoring
(Romijn et al 2012) and often do not have spatial
quantitative data on drivers of deforestation at
their disposal (Hosonuma et al 2012). This study
provides insight into specific drivers of deforesta-
tion that can help REDD+ countries with targeted
capacity-building and the stepwise improvement of
their national forest monitoring systems to provide
more up-to-date and detailed information on dri-
vers of deforestation. In turn this allows for the
(re)design of more effective national REDD+ stra-
tegies (Salvini et al 2014).

5. Conclusion

In this paper we quantified proximate drivers of
deforestation and related carbon losses in South
America based on remote sensing time series in a
systematic, spatially explicit manner. This contributes
to the understanding of drivers of deforestation and
related carbon losses at the national and continental
level and allows for comparisons across national and
regional boundaries. In addition, this spatially expli-
cit quantitative information on deforestation can
provide valuable input for statistical analysis and
modelling of underlying drivers of deforestation.
Our findings can also support the development of
national REDD+ interventions and forest monitor-
ing systems.

Our results show the importance of temporal and
spatial patterns of deforestation drivers. The future
priorities for getting more insight into drivers of
deforestation in a REDD+ context lie in expanding the
geographical area to all REDD+ focus areas (Central
America, Sub-Saharan Africa, South East Asia), in
using more recent remote sensing time series, and in
using more detailed forest biomass maps to capture
spatial forest biomass gradations.
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TableA1.Estimates of deforested area (mean, 103 ha) and standard error (SE, 103 ha) per follow-up land use and country from1990 to 2005.

Argentina Bolivia Brazil Colombia Paraguay Peru Venezuela

Follow-up land use Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE

Mixed agriculture 0 0 10 10 229 121 269 263 0 0 4 4 3 3

Smallholder crop agriculture 0 0 223 136 103 37 233 93 4 4 423 184 50 37

Commercial crop agriculture 1929 701 1128 611 3632 867 0 0 967 522 0 0 125 109

Tree crops 14 13 1 1 193 68 4 4 0 0 17 15 1 1

Pasture 1982 523 1616 472 29 949 2716 1315 562 2680 813 201 141 593 215

Infrastructure 108 40 81 32 563 320 8 4 45 18 57 28 38 18

➢Urban and Settlements 3 3 29 25 392 316 1 1 0 0 12 6 25 14

➢Roads andBuilt-up 105 40 52 21 95 21 7 4 45 18 25 17 5 3

➢Mining 0 0 0 0 76 41 0 0 0 0 20 20 9 9

Other land use 406 214 829 364 1629 185 270 148 97 30 164 66 231 90

➢Bare land 4 4 6 4 17 15 7 4 0 0 0 0 28 28

➢Other wooded land 163 57 247 68 1495 180 232 135 92 29 90 58 161 62

➢Grass &herbaceous 235 197 19 13 34 19 14 12 2 2 0 0 41 34

➢Wetlands 4 3 557 346 83 31 17 11 3 3 74 30 1 1

Water bodies 4 3 243 102 300 89 26 14 4 3 143 50 646 402

➢Natural 4 3 243 102 253 88 26 14 4 3 143 50 8 5

➢Man-made 0 0 0 0 47 12 0 0 0 0 0 0 638 402

Unknown land use 0 0 12 10 2 2 5 3 0 0 0 0 1 1

Total 4441 989 4142 943 36 599 3008 2129 650 3798 921 1010 264 1689 586

Appendix A
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TableA2.Estimates of forest carbon losses (mean,MgC) and standard error (SE,MgC) per follow-up land use and country from1990 to 2005.

Argentina Bolivia Brazil Colombia Paraguay Peru Venezuela

Follow-up land use Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE

Mixed agriculture 0 0 1235 1232 22 521 12 357 40 119 39 454 0 0 738 737 325 324

Smallholder crop agriculture 0 0 27 155 16 068 13 557 4823 34 802 13 926 225 223 70 760 31 848 7714 5867

Commercial crop agriculture 127 523 47 503 135 073 79 944 416 421 117 043 0 0 50 349 27 204 0 0 11 949 10 768

Tree crops 962 930 78 77 15 531 4813 234 234 0 0 2195 2025 139 138

Pasture 129 699 37 173 174 770 51 130 3605 826 384 314 180 656 84 179 121 185 36 091 33 394 24 346 59 368 21 417

Infrastructure 7121 2983 7847 3599 79 345 48 346 1019 513 2108 820 9876 4830 4063 1754

➢Urban and Settlements 230 218 3864 3354 56 699 47 904 116 114 0 0 2102 954 2691 1421

➢Roads andBuilt-up 6890 2956 3983 1426 11 315 2764 903 503 2108 820 4324 2903 451 287

➢Mining 0 0 0 0 11 332 6197 0 0 0 0 3450 3449 921 913

Other land use 31 893 16 896 108 734 48 763 184 727 23 604 29 922 15 634 4666 1400 28 139 11 462 26 242 9973

➢Bare land 325 340 634 477 2481 2272 834 580 0 0 0 0 2746 2729

➢Other wooded land 12 649 4379 31 603 9138 173 326 23 307 26 730 14 292 4407 1364 15 446 10 058 17 192 6609

➢Grass and herbaceous 18 587 15 634 2025 1481 2032 986 1336 1239 98 82 0 0 6160 5098

➢Wetlands 331 235 74 472 46 463 6889 2352 1022 627 161 132 12 693 5290 143 143

Water bodies 289 201 31 967 13 641 34 173 10 731 2292 1130 162 131 24 666 8647 63 690 39 629

➢Natural 289 201 31967 13 641 28 914 10 656 2292 1130 162 131 24 666 8647 769 496

➢Man-made 0 0 0 0 5259 1434 0 0 0 0 0 0 62 922 39 647

Unknown land use 0 0 1536 1218 298 263 448 280 0 0 0 0 156 154

Total 297 486 68 154 488 395 117 738 4372 400 426 070 289 492 96 679 178 695 42 935 169 769 45 669 173 647 58 141
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