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Abstract
In the Amazon, deforestation and climate change lead to increased vulnerability to 
forest degradation, threatening its existing carbon stocks and its capacity as a carbon 
sink. We use satellite L- Band Vegetation Optical Depth (L- VOD) data that provide an 
integrated (top- down) estimate of biomass carbon to track changes over 2011– 2019. 
Because the spatial resolution of L- VOD is coarse (0.25°), it allows limited attribu-
tion of the observed changes. We therefore combined high- resolution annual maps 
of forest cover and disturbances with biomass maps to model carbon losses (bottom-
 up) from deforestation and degradation, and gains from regrowing secondary forests. 
We show an increase of deforestation and associated degradation losses since 2012 
which greatly outweigh secondary forest gains. Degradation accounted for 40% of 
gross losses. After an increase in 2011, old- growth forests show a net loss of above- 
ground carbon between 2012 and 2019. The sum of component carbon fluxes in 
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1  |  INTRODUC TION

The Amazon contains roughly a quarter of the world's above- ground 
biomass carbon (AGC) stocks (Liu et al., 2015), but these are at risk 
from continuous deforestation, degradation and climate change 
(Doughty et al., 2015; Silva Junior et al., 2019). Deforestation can 
further contribute to regional drying, exacerbating climatic pres-
sures (Staal et al., 2020). The Amazon old- growth forest sink mea-
sured by forest inventories is decreasing (Brienen et al., 2015; Hubau 
et al., 2020), and forests in the southeastern Amazon are already 
acting as a net carbon source (Gatti et al., 2021) as a consequence 
of widespread forest degradation resulting from human and climatic 
pressures (Matricardi et al., 2020). Degradation is the partial loss of 
forest function and structural integrity from disturbance such as 
fire, selective logging and forest fragmentation which encompass 
the cascading effects of deforestation (Assis et al., 2022; Bullock 
et al., 2020; Matricardi et al., 2020; Qin et al., 2021; Silva Junior, 
Aragão, et al., 2020). Yet, degradation is not explicitly reported in 
national inventories and is not considered in commitments to re-
ductions of greenhouse gas emissions (Silva Junior et al., 2021). 
Meanwhile, there are large areas of fast re- growing secondary forest 
from post- agricultural abandonment and fires in the Amazon. These 
forests have the potential to become a significant carbon sink, but 
they are subject to repeated disturbances (Heinrich et al., 2021; 
Wang et al., 2020; Yang et al., 2020). Understanding these opposite 
drivers of carbon dynamics is essential to forecast the future trajec-
tory of the Amazon forest as a carbon sink and long- term reservoir.

Satellite observations can reveal the locations and extent of pro-
cesses causing uptake or release of carbon. High spatial resolution 
(30 m) optical data can map annual changes in forest cover (Hansen 
et al., 2013; Instituto Nacional de Pesquisas Espaciais [INPE], 2021; 
MapBiomas, 2021; Vancutsem et al., 2021) and disturbance events 
(Bullock et al., 2020; Vancutsem et al., 2021). In combination with 
static AGC maps (Baccini et al., 2012; Saatchi et al., 2011; Santoro & 
Cartus, 2021), these data can be used to estimate spatially specific 
immediate carbon emissions from deforestation and degradation 
(Harris et al., 2021). Yet, carbon gains or losses in intact or weakly 
disturbed forests are elusive.

Vegetation Optical Depth in the L- band (L- VOD) derived from 
the Soil Moisture and Ocean Salinity (SMOS) satellite passive mi-
crowave observations can be related to AGC at annual timescales 

(Brandt et al., 2018; Fan et al., 2019; Qin et al., 2021), which makes it 
a unique tool to map global carbon dynamics. L- VOD can overcome 
limitations of optical sensors in tropical regions, since it is unaffected 
by clouds and remains sensitive to changes in high biomass values 
(Rodríguez- Fernández et al., 2018). However, L- VOD observations 
have a spatial resolution of 0.25° (~25 km). This is too coarse to attri-
bute observed changes, since one grid- cell can contain losses along 
with gains from old- growth or secondary forest (Qin et al., 2021). 
So far, no attempts have been made to compare L- VOD based ‘top 
down’ AGC changes to models representing individual processes 
leading to carbon gain or loss, such as deforestation, degradation, 
secondary forest growth processes and environmental factors af-
fecting carbon changes of ‘intact’ old- growth forests such as natural 
disturbances, CO2 fertilization and climate- induced mortality.

Here we tackle this challenge by modelling estimates of inter- 
annual changes in AGC associated with the processes of defor-
estation, degradation and secondary forest growth for the entire 
Amazon region. This model is integrated at high spatial resolution 
thanks to new datasets such as the biomass maps from ESA CCI 
(Santoro & Cartus, 2021) (100 m) and multi- temporal land- cover 
classification datasets (MapBiomas, 2021; Vancutsem et al., 2021) 
(30 m). Combined with L- VOD- based AGC changes to track carbon 
in old- growth forests, this model allows a timely assessment of 
Amazon carbon dynamics. Results of this work provide new data 
to assess national carbon budgets, define baselines for land- based 
mitigation efforts and evaluate models used for future projections 
(Ciais et al., 2020).

2  |  MATERIAL S AND METHODS

2.1  |  Satellite data processing

2.1.1  |  AGC product retrieved from L- VOD

The L- VOD AGC data were derived from the SMOS passive micro-
wave satellite images L- VOD product (version 2.0) developed using 
the SMOS- IC algorithm (Fernandez- Moran et al., 2017; Wigneron 
et al., 2021). This SMOS- IC V2 L- VOD product consists of global 
data with 1– 3 day revisit times from ascending (ASC) and descending 
(DESC) orbit acquisitions.

our model is consistent with the total biomass change from L- VOD of 1.3 Pg C over  
2012-2019. Across nine Amazon countries, we found that while Brazil contains the 
majority of biomass stocks (64%), its losses from disturbances were disproportion-
ately high (79% of gross losses). Our multi- source analysis provides a pessimistic as-
sessment of the Amazon carbon balance and highlights the urgent need to stop the 
recent rise of deforestation and degradation, particularly in the Brazilian Amazon.

K E Y W O R D S
Amazon, biomass, carbon, deforestation, degradation, forest, growth, VOD
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Extensive filtering of the L- VOD data is necessary due to the in-
fluences of land- cover and radio frequency interference (RFI) on the 
L- VOD retrieval. Pixels affected by water and urban areas as well as 
steep terrain were excluded based on quality flags from auxiliary data-
sets (Brandt et al., 2018). L- VOD retrieved from passive microwave 
observations can also be influenced by sub- canopy flooding, amplify-
ing the intra- annual variations in L- VOD independent of biomass and 
vegetation water content changes (Bousquet et al., 2021). When com-
paring annual values derived only from the wet season for most of the 
Amazon, we expect a reduced impact of this effect on biomass change 
estimates and trends, however absolute values in inundated areas may 
be underestimated. Therefore, in addition to SMOS- IC data flags, a 
classification which can better distinguish inundated forest areas de-
rived from synthetic aperture radar data (Hess et al., 2015) was used 
over the Amazon river basin to mask L- VOD grid- cells which are more 
than 25% inundated at high water levels. This threshold is less con-
servative than the 10% open water threshold used for SMOS- IC data 
flags (Fernandez- Moran et al., 2017) to avoid masking vast expanses of 
seasonally partially flooded forests.

Observations with a brightness temperature deviation from 
modelled values (TB- RMSE) of greater than 8 K were excluded as 
they indicate high RFI (Brandt et al., 2018; Fan et al., 2019). Both ASC 
and DESC data were considered to ensure a greater data record. 
While Qin et al (Qin et al., 2021) only used ASC data to study the 
Brazilian Amazon, the inclusion of DESC data was deemed appro-
priate due to the enhanced filtering procedure (Thoning et al., 1989) 
used. For each trimester, we investigated the difference between 
ASC and DESC mean values and if it exceeded 0.05 discarded the re-
spective data if TB- RMSE >5 K. Daily values are then combined and 
if ASC and DESC are available on the same day, the value with lower 
associated TB- RMSE was used. Outliers beyond 2 standard devia-
tions from the trimester mean values were also excluded (Brandt 
et al., 2018).

Following this pre- processing, a curve fitting method was ap-
plied to the remaining daily data to extract a smoothed time series 
and the trend curve with seasonality removed (see Supplementary 
Materials for further details). Three different methods for deriving 
annual L- VOD aggregate index values were applied: (1) Maximum 
of the smoothed curve fit, (2) Mean of the smoothed curve fit and 
(3) Mean of the trend curve. These values were derived over a  
4- month window from January to April of the respective year as 
these have high Amazon basin averaged precipitation and soil mois-
ture storage, particularly in the southern Amazon (Li et al., 2006; 
Liang et al., 2020). This approach was selected over aggregating 
values for an entire calendar year as it should further decrease sen-
sitivity to inter- annual plant water content variations and increase 
the potential of the L- VOD index to reveal year- to- year differences 
associated with deforestation. For Brazil deforestation peaks in May, 
on average 3 months after the rainy season, and leads the peak of 
fire in August to September (Aragão et al., 2008).

The mean of AGC estimates derived from these three indices 
was used for the analysis and the standard deviation between esti-
mates included in the uncertainty.

The ESA CCI biomass (v2) map with reference year 2017 (Santoro 
& Cartus, 2021) was used to calibrate the annual L- VOD index val-
ues to AGC. The ESA CCI product was favoured over other datasets 
with reference year 2010 (Avitabile et al., 2016; Baccini et al., 2012; 
Saatchi et al., 2011) due to a complete L- VOD data record for the full 
wet season of the reference year and the previous use of ESA CCI 
in derivation of secondary forest growth curves used in this study 
(Heinrich et al., 2021). We fitted a four parameter function curve 
(Fan et al., 2019) to the L- VOD indices and corresponding ESA CCI 
biomass values in 2017:

The corresponding values of a– d for each product and their standard 
errors can be found in Table S1, Inf was set to 1010.

Despite extensive filtering, some regional anomalies were 
evident in year- to- year AGC changes derived from L- VOD (see 
Supplementary Materials). These cells were excluded from the anal-
ysis by masking cells showing greater than 20 Mg C ha−1 increase in 
any one year. This is a permissive threshold, considerably higher than 
the potential forest carbon accumulation rate for the biome (up to 
6 Mg C ha−1 year−1; Cook- Patton et al., 2020), in order to remove the 
most anomalous cells.

2.1.2  |  Land- cover datasets

The Mapbiomas Amazonia ‘Collection 2’ (MapBiomas, 2021) product 
represents an annual land- cover classification derived from Landsat 
data using the random forest algorithm. Collection 2 covers the en-
tirety of the Amazon biome from 1985 to 2018. Deforested areas 
were identified where the Mapbiomas classification changed from 
forest in the previous year to pasture, agriculture or vegetation- free 
land- cover.

Annual secondary forest extent was derived from a reclassifica-
tion of Mapbiomas C2 (Silva Junior, Heinrich, et al., 2020) for pixels 
that were not forest for at least 1 year prior to transitioning to forest 
class. The secondary forest age was calculated as successive years 
where a pixel remains forest while forests regrowing since before 
1985 could not be identified by this dataset.

Areas of forest degradation were extracted from the trop-
ical moist forest (TMF) land cover change dataset (Vancutsem 
et al., 2021). The TMF dataset defines degradation as a disturbance 
in the tree canopy cover that is visible from space over a short period 
of time (less than 2.5 years) leading to a loss of biodiversity and/or 
carbon storage. This includes events such as logging, fire, windthrow 
and drought induced tree mortality. The degraded pixels remain for-
ested. Baselines of degraded forest considering degradation events 
throughout the whole time- series of available data (1990– 2018) 
were generated to differentiate degraded from old- growth forest 
and new degradation events identified for each year were used to 
derive degradation losses in 2011– 2018.

(1)AGC=a×
arctan (b×(VOD−c))−arctan (−b×c)

arctan (b×(Inf−c))−arctan (−b×c)
+d
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Where deforestation occurs, the forest edges at the deforestation 
front are subject to selective logging and fires. These processes are 
widespread but not always identified by optical data and we therefore 
modelled forest edge degradation explicitly. These processes have 
been found to affect forest areas up to 120 m from the deforested 
edge (Silva Junior, Aragão, et al., 2020). An annual 120 m buffer- based 
classification of forest edge areas was used as a reference and these 
areas were excluded from the disturbance dataset introduced above.

An old- growth forest layer was derived for each year by exclud-
ing previously degraded (since 1990) and secondary forest areas 
from the Mapbiomas forest classification.

Changes between land- cover types and comparisons to ensure 
consistency between datasets (such as forest extents between 
Mapbiomas and TMF map) were performed at the original 30 m spa-
tial resolution of the data, prior to any resampling to fractional cov-
ers for computations with coarser resolution datasets.

2.2  |  Biomass change modelling

To model biomass change on the basis of the land- cover classifica-
tion we applied a number of simplified methodologies described 
in the following. A flowchart overview of the datasets involved is 
provided in Figure S1. Where AGC change relied on reference data 
derived from the ESA CCI 2017 biomass product, the change was 
estimated at 1 km resolution, otherwise at the original resolution 
of the datasets. Outputs were then aggregated to 0.25° to match  
L- VOD grid- cells and combined with old- growth forest change to 
represent total AGC change per year. All biomass changes associated 
with conversion between forest classes or non- forest are assumed 
to occur within the year that they are detected.

To estimate a biomass loss factor associated with non- edge degra-
dation, reference AGC values for old- growth forest and degraded for-
est were extracted from the ESA CCI biomass product at 100 m spatial 
resolution using the land- cover datasets and yielded median old- growth 
AGC values of 126.4 ± 27.3 Mg C ha−1 and median degraded AGC values 
of 81.78 ± 27.1 Mg C ha−1. Based on these values we estimate a 35.3% 
reduction of AGC associated with disturbance events that result in fur-
ther degraded forest for non- edge degradation. This value is greater 
than AGC reduction associated with logging but smaller than that asso-
ciated with fire from LiDAR datasets; however, it was previously found 
that disagreements between pan- Amazonian biomass maps and LiDAR 
data were high and these maps generally had smaller differences be-
tween old- growth and burnt forest AGC (Longo et al., 2016).

To obtain regional reference values of old- growth forest for mixed 
grid cells, we applied a circular filter with 1° radius to calculate median 
values from the biomass map masked by old- growth forest areas (cells 
with >90% old- growth forest cover). The same spatial filtering method 
was applied to obtain reference values of changes in old- growth for-
est AGC from L- VOD; however, this required a two- step filtering ap-
proach with 2.5, then 5° radius to provide a reference value for every 
grid- cell due to fewer >90% old- growth grid- cells at 0.25° resolution. 
The change in old- growth forest AGC for >90% old- growth grid cells 

was calculated as the residual of total L- VOD AGC change and the 
modelled changes of the different processes as shown in Equation (1). 
In these reference cells, the combination of changes attributed to the 
different processes is therefore equal to the L- VOD AGC change.

For secondary forest and forest edges, we used growth and loss curves 
respectively to describe the AGC (change) per year as a function of the 
secondary forest and edge ages. We used a secondary forest growth 
curve that was derived for the north- west Brazilian Amazon (see Table S2) 
(Heinrich et al., 2021) where climatic conditions are expected to be most 
representative of the entirety of the Amazon biome and the estimated 
growth rates are similar to a pan- tropical growth curve (Wang et al., 2020). 
Previous pan- Amazonia scale studies have used baseline accumulation 
rates for young and old secondary forests (Smith et al., 2021). The change 
in secondary forest AGC is derived from the growth curve using second-
ary forest age and accounting for changes in secondary forest extent.

To quantify biomass loss in forest edges, we apply a loss model 
as a function of edge age, derived from airborne LiDAR observations 
(Table S2) (Silva Junior, Aragão, et al., 2020).

Deforestation of old- growth forest, degraded forest and sec-
ondary forest was distinguished. The biomass lost through defor-
estation per year was calculated as the fraction of deforested area 
multiplied by old- growth forest reference AGC or a degraded refer-
ence AGC after applying the forest edges loss model. The secondary 
forest AGC deforested was calculated using the growth function 
(Table S2) and age per deforested secondary forest pixel.

2.3  |  Statistical analysis

Trends in L- VOD derived and modelled AGC at the 0.25° grid- cell 
level were robustly fit using the Theil- Sen trend estimator and their 
significance estimated at the 95% confidence level using the ‘trend’ 
package (v. 1.1.4) in R (Pohlert, 2020).

To investigate the correspondence between L- VOD derived and 
modelled AGC change we calculated Pearson's r and mean absolute 
deviation (MAD) both for trends in AGC for grid- cells with less than 
90% old- growth forest fraction in 2018.

To generate a total uncertainty estimate for modelled AGC change we 
combined the uncertainties associated with the different processes and 
the annual changes using root sum of squares. Results from an alternative 
method using summation of annual uncertainties are reported in the SI.

3  |  RESULTS

3.1  |  Trends in Amazon carbon stocks

We used L- VOD data to quantify changes of AGC within 0.25° grid- 
cells over the entire Amazon biome. Trends in AGC for the 2011– 
2019 period reveal areas that were losing or gaining carbon over the 

(2)
ΔAGCold−growth_ref = ΔAGCL−VOD −

(

ΔAGCdeforestation + ΔAGCdegradation + ΔAGCSFgrowth

)

.
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last decade (Figure 1a). Areas with significant carbon losses were 
~5 times greater than areas showing significant gains. Carbon gains 
occurred in areas that are mostly covered by old- growth forest, here 
defined as forests that were not detected as disturbed since the be-
ginning of the observation period (degradation mapping since 1990; 
Vancutsem et al., 2021). On average, gains were not associated with 
net increase in forest cover (Figure 1b). Contiguous areas of increas-
ing AGC are found in the South- West Amazon (Figure 1a).

Losses correspond spatially with the arc of deforestation and 
occur predominantly in South- Eastern Amazon with rates up to 
~4.6 Mg C ha year−1. The forest cover classification reveals that grid- 
cells with significant losses experienced a 4% mean decrease in 
forest area. Further, 21% of the remaining forest area in these loss 
regions is classified as disturbed, including extensive degraded areas 
as a consequence of fires, logging and fragmentation (Matricardi 
et al., 2020) but also areas of regrowing secondary forest after agri-
cultural abandonment (Figure 1b).

3.2  |  Spatial distribution of AGC change drivers

For each 0.25° grid- cell, we modelled AGC change from deforesta-
tion, degradation and secondary forest growth separately by combin-
ing fine spatial resolution (30 m) land- cover and change classification 
data with a static high resolution biomass map (MapBiomas, 2021; 
Santoro & Cartus, 2021; Vancutsem et al., 2021). Changes in old- 
growth forest within mixed grid- cells were inferred from the residual 
L- VOD AGC changes of proximal grid- cells with >90% old- growth 
forest (see Methods). The combination of these estimates is further 
referred to as ‘modelled AGC change’ and reveal the spatially distinct 
drivers of AGC changes in the Amazon (Figure 2a) and the contribu-
tion of different loss and gain processes (Figure 2b– e).

Trends derived from modelled estimates from all the above pro-
cesses over the 2011– 2019 period showed moderate correspon-
dence spatially with total L- VOD AGC trends (R2: .46, excluding 
grid- cells with >90% old- growth forest, Figure S2a), while agreeing 
on positive or negative trends for 89% of this area (Figure S3). There 
were similar correlations when considering only the most disturbed 
grid- cells (Figure S2b). Investigating differences between trends in 
L- VOD AGC and the modelled values reveals that relative errors 
are highest in areas with greater agricultural land- cover fractions 
(Figure S4) and modelled AGC losses are greater in areas experienc-
ing a small- to- moderate amount of deforestation and degradation, 
particularly in the Western Amazon (Figure 2, Figure S5).

While hotspots of deforestation activity are responsible for the 
largest local losses (Figure 2b), the associated degradation greatly in-
creases the area and magnitude of biomass losses (Brinck et al., 2017; 
Matricardi et al., 2020). Forest degradation closely follows spatial 
patterns of deforestation due to fire and logging- related biomass 
loss at forest edges (Silva Junior, Aragão, et al., 2020). We observe 
that degradation hotspots are concentrated around floodplains, par-
ticularly the Branco floodplain in North- Western Brazil (Figure 2c), 
which have been described as an Achilles' heel of the Amazon due to 
fire vulnerability (Flores et al., 2017).

Secondary forest growth is concentrated in the fragmented 
landscapes of the eastern Brazilian Amazon (Heinrich et al., 2021) 
and along western fringes in Peru and Colombia (Figure 2d). The 
old- growth forest changes inferred from L- VOD (Figure 2e) indicate 
net AGC gains in the Western Amazon while regions of the South- 
Eastern Amazon are a carbon source. We also find L- VOD AGC 
trends in Amazon- wide old- growth forest areas are negatively cor-
related with temperature increase for both long- term (1981– 2018) 
and short- term (2011– 2018) temperature trends, mostly influenced 
by the South- Eastern Amazon (Figures S6 and S7).

F I G U R E  1  Trends in AGC and the associated forest cover fractions. (a) AGC trends (2011– 2019) over the Amazon biome. Grid- cells where 
trends are significant are indicated with cross- hatches and cells where reliable data were not available are omitted (e.g. flooded areas and 
regional anomalies). (b) Mean land cover fractions in 2018 averaged over grid- cells showing significant positive (gain) and negative (loss) 
trends. Displayed are the proportions of old- growth, degraded (edge and non- edge), secondary forest and non- forest area. Edge degradation 
includes forest within 120 m distance from human- made forest edges (Silva Junior, Aragão, et al., 2020). The net change in forest area 
fraction relative to 2011 is also indicated (~0 for gain cells, −0.03 or 4% reduction for loss cells). Basemap sources: Esri, DigitalGlobe, 
GeoEye, Earthstar Geographics, CNES/Airbus  DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.
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    |  1111FAWCETT et al.

3.3  |  Process- level AGC change over time

L- VOD reveals that AGC of the Amazon biome has decreased by 
1.32 ± 0.4 Pg C between 2012 and 2019. The AGC decrease follows 
an increase of 0.57 ± 0.18 Pg C from 2011 to 2012 which is also evi-
dent in the old- growth forest response (Figure 3a). After this initial in-
crease, reductions in AGC within old- growth forests over the following 
years suggest that these forests may have transitioned to a net source 
of carbon for the period 2012 to 2019 (−0.11 ± 0.18 Pg C), with high 
inter- annual variability (Figure 3a).

Annual AGC changes modelled using our bottom- up bookkeeping 
approach including old- growth forest variations reproduce the decrease 
of Amazon carbon stocks inferred from the annual L- VOD AGC values 

(Figure 3b). However, the modelled increase from 2011 to 2012 is 
smaller, indicating that part of the L- VOD AGC additional increase lies in 
areas not dominated by old- growth forests, including secondary forest, 
recovering degraded forest, pasture and croplands. Further, modelled 
losses since 2016 are greater than those inferred by L- VOD AGC.

We find that deforestation accounted for a mean loss of 
135 Tg C year−1 over the Amazon biome for the 2011– 2019 period 
with an increase since 2012. As deforestation creates new forest 
edges, a similar increase in edge- related carbon loss with a mean loss 
of 54 Tg C year−1 was identified. Non- edge degradation has a distinct 
peak in 2016 with losses of 97 Tg C year−1.

Carbon gains by regrowing secondary forests saw a signifi-
cant (p < .05) but modest increase from 39 Tg C year−1 in 2011 to 

F I G U R E  2  Total AGC changes 
associated with different processes. 
(a) Net change of AGC inferred by the 
combination of modelled and old- growth 
forest changes over the 2011– 2019 
period, (b– d) modelled AGC change 
due to processes of (b) deforestation, 
(c) degradation, (d) secondary forest 
growth and (e) AGC change due to other 
processes within old- growth forests 
inferred by combining old- growth forest 
cover with the L- VOD AGC change 
residual within proximal >90% old- growth 
forest cover grid- cells.
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46 Tg C year−1 in 2018. However, we also observe a considerable 
increase in deforestation of secondary forest areas (Figures S8 
and S9).

We also report AGC change per process in Amazonia of each 
of the nine countries intersecting the Amazon biome (Figure 4, 
Table S3) and their land- cover fractions (Figure S10). The net mod-
elled change in carbon stocks is negative for all countries, except 
Venezuela and Guyana. In Brazil, a net loss of 1.05 ± 0.2 Pg C is 
found since 2011 and it accounts for 78.7% of gross Amazon losses. 
In contrast, Brazil holds 63.5% of the total considered Amazon AGC 
stocks. Other large losses occur in Peru (−70.3 ± 19.4 Tg C [−1.2%]) 
and in Colombia (−26.5 ± 34.4 Tg C [−0.6%]). In most countries, defor-
estation losses are greater than degradation- induced losses. For the 
Brazilian Amazon, degradation accounts for 37.6% of losses which 
is in line with previous estimates from inventories and bookkeep-
ing models (Aguiar et al., 2016; Berenguer et al., 2014). For years 
following the large La Niña event in 2011, the old- growth forests 
showed net AGC decreases for multiple countries including Brazil 
(Figure S11, Table S4).

Brazil's large AGC losses are confirmed by L- VOD inferred AGC 
changes which show a 2.2% reduction in AGC since 2011. For other 
countries the trends in L- VOD AGC mostly agree (Table S5), but 
there is low confidence in overall increase or decrease in AGC.

4  |  DISCUSSION

4.1  |  Spatial patterns of Amazon AGC changes

The largest losses of AGC in the Amazon occur along the arc of 
deforestation. Besides initial removal of biomass, deforestation- 
induced forest fragmentation creates conditions that lead to higher 
fire probability (Armenteras et al., 2013; Silva Junior et al., 2018) and 

biomass reductions have been observed near exposed forest edges 
(Silva Junior, Aragão, et al., 2020). Regions of higher secondary for-
ests gains in Peru and Colombia are likely associated with local aban-
donment of agroforestry which covers large areas in the Andes and 
can lead to regrowth (Aragón et al., 2021). AGC in regions dominated 
by old- growth forests showed an increase in the South- West and 
decreases in the South- East Amazon. The South- West was impacted 
by the strong drought events of 2005 and 2010 (Saatchi et al., 2013) 
and showed tree mortality increasing at a faster pace than growth in 
forest plots within the 1983– 2011 period (Brienen et al., 2015). The 
observed increasing AGC trends over the last decade may therefore 
indicate a recovery from these past events. Decreasing AGC in the 
forests of the South- East is consistent with atmospheric vertical 
profiling measurements (Gatti et al., 2021). This has been associated 
with temperature increases and precipitation decreases causing 
increased tree mortality in an area where background mortality is 
already high (Brienen et al., 2015; Doughty et al., 2015; Esquivel- 
Muelbert et al., 2020).

Spatial patterns are also evident within disagreements be-
tween modelled and L- VOD AGC changes (Figures S4a and S5). 
Disagreements in areas with high agricultural fraction covers are 
likely due to non- forest biomass density changes (Qin et al., 2021) 
not represented in the model. Greater modelled AGC loss in regions 
with small- scale disturbances can be explained by the coarse spatial 
resolution of the L- VOD dataset leading to reduced sensitivity, with 
small changes potentially obscured due to remaining plant water 
content fluctuations and seasonal flooding (Bousquet et al., 2021; 
Konings et al., 2021). Nevertheless, the correlation between L- VOD 
AGC trends with modelled values (R2 = .46) was stronger than pre-
viously reported between L- VOD AGC changes and deforestation 
or forest cover changes for the Brazilian Amazon (Qin et al., 2021). 
This is partially because our results include local old- growth forest 
variations, though inclusion of degradation processes and secondary 

F I G U R E  3  Time series of Amazon AGC changes. Time series showing (a) annual changes in AGC over the Amazon for 2011 up to 2018 
as modelled for each process and inferred from L- VOD (old- growth forest change) and (b) total AGC from 2011 to 2019 over the Amazon, 
modelled and inferred from L- VOD, where values represent AGC at the beginning of the respective year (January– April). Ribbons represent 
uncertainties associated with the ESA CCI biomass map (±1 SD, for deforestation, edge and non- edge degradation loss), from the secondary 
forest growth model (±1 SD of average growth rate) and uncertainties reported for old- growth forest change inferred from ±1 SD of the ESA 
CCI biomass map used for calibration of L- VOD AGC and the three L- VOD indices (see Section 2). The total modelled AGC in (b) includes the 
combination of these uncertainties while for L- VOD AGC the ~30% error is omitted for the purpose of better visualization of the differences 
between years and dataset means.
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forests in addition to deforestation also lead to improved correspon-
dence (Table S6).

4.2  |  Temporal variability of AGC change drivers

The Amazon AGB decreased since 2012 after an increase in 2011 
(Figure 3b). The year 2012 marked the lowest observed deforestation 

activity in the Brazilian Amazon (Instituto Nacional de Pesquisas 
Espaciais [INPE], 2021), the result of stronger preventative poli-
cies put into action in 2004 (Silva Junior, Aragão, et al., 2020). The 
observed increase, previously reported from L- VOD data for the 
Brazilian Amazon, has been attributed to the La Niña event of 2011 
following the strong drought year of 2010, and is consistent with 
independent evidence from forest plots and atmospheric inversions 
(Qin et al., 2021).

F I G U R E  4  Country scale AGC changes in the Amazon forest from 2011 to 2019. AGC change associated with different processes 
(deforestation, degradation, secondary forest growth, old- growth forest change), combined and L- VOD inferred AGC change for parts of the 
Amazon forest divided by country, from the beginning of 2011 to the beginning of 2019. Note the different y- axes to visualize changes for 
smaller countries. Whiskers represent uncertainties associated with the ESA CCI biomass map (±1 SD, for deforestation, edge and non- edge 
degradation loss), from the secondary forest growth model (±1 SD of average growth rate) and uncertainties reported for old- growth forest 
change and L- VOD change inferred from ±1 SD of the ESA CCI biomass map used for calibration of L- VOD AGC and the three L- VOD indices 
(see methods). The total modelled changes include the combination of these uncertainties.
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Since 2012, we report an increase in deforestation and asso-
ciated edge degradation (Figure 3a). Increasing deforestation over 
this period is supported by national monitoring of forest area loss 
for the Brazilian Amazon (Instituto Nacional de Pesquisas Espaciais 
[INPE], 2021) and is related to changes to the Brazilian Forest Code 
and weaker enforcement of prevention measures (Silva Junior, 
Aragão, et al., 2020). A recent study reported similar deforestation 
and edge- related losses within the 2011– 2015 period using the same 
loss function with Hansen forest change data (Hansen et al., 2013; 
Silva Junior, Aragão, et al., 2020).

The large degradation losses evident for 2016 (Figure 3, 
Figure S9) are related to the strong El Niño drought of 2015/2016 
resulting in increased fire occurrence (Aragão et al., 2018; Jiménez- 
Muñoz et al., 2016; Silva Junior et al., 2019). Large scale forest fires 
occur mainly due to the fire escaping from recent deforestation or 
pasture/agriculture management areas (Cano- Crespo et al., 2015) 
during extreme drought years in Amazonia (Aragão et al., 2018; Silva 
Junior et al., 2019).

Old- growth forest areas showed an increase in AGC in 2015 rela-
tive to 2014 (Figure 3a), despite including the onset of the 2015/2016 
drought which reduced gross primary productivity in drought- affected 
regions. The South Eastern Amazon did show a decrease in AGC 
which appeared to be compensated by increase in non- drought af-
fected regions of the South West and increase in the central Amazon 
(Figure S12) where enhanced growth may be due to greater radiation 
availability coordinated with flushing of more efficient young leaves at 
the beginning of the drought (Wu et al., 2016; Yang et al., 2022).

Caution is advised when inferring inter- annual variations of 
AGC based on L- VOD due to the influence of fluctuations in rela-
tive water content of vegetation (Konings et al., 2021). In this study 
we sought to minimize these effects by careful filtering of L- VOD 
datasets and comparing data from the wettest periods. Previous ef-
forts to remove water- content variations from L- VOD yielded similar 
AGC change compared with using uncorrected L- VOD data (Yang 
et al., 2022). Some remaining variations not due to biomass may re-
main, increasing the magnitude of anomalies, whereas longer- term 
averages and trends remain more reliable.

The average AGC change between 2012 and 2019 suggested a weak 
source in Amazonian old- growth forests for this period. A long- term 
decline of the Amazon carbon sink until 2011 was previously reported 
based on forest plots (Brienen et al., 2015) and the extension of this data 
record will provide more information on the forests current status.

Despite slight increases in secondary forest carbon gains similar 
to previous reports (Smith et al., 2021) that possibly indicate increas-
ing areas of agricultural abandonment (Aragón et al., 2021), repeated 
clearing (Heinrich et al., 2021; Nunes et al., 2020), and degradation 
prevent secondary forests from reaching their full carbon storage 
capacity (Heinrich et al., 2021) and result in high turnover rates and 
short residence times (Schwartz et al., 2020; Smith et al., 2021). 
Recent upturn in deforestation of secondary forest areas casts doubt 
on their ability to function as longer- term carbon sinks (Figures S8h 
and S9) (Smith et al., 2021; Wang et al., 2020).

4.3  |  Country scale differences in processes

Processes driving carbon gains and losses vary between countries 
due to economic factors and policies (Brito et al., 2019; Walker 
et al., 2020) but also differences in regional climates, their trends 
and forest structure (Chen et al., 2015; Fonseca et al., 2017). In Peru, 
artisanal scale gold mining is a major driver (Espejo et al., 2018) and 
in Colombia an upturn in conversion of Andean forest to agricul-
ture has previously been observed following the peace agreement 
between the Colombian Government and FARC (Fuerzas Armadas 
Revolucionarias de Colombia) in 2012 (Clerici et al., 2020; Murillo- 
Sandoval et al., 2021).

Greater losses from degradation than deforestation were ob-
served for smaller Amazon countries (Venezuela, Suriname, Guyana 
and French Guiana). This is likely associated with a greater propor-
tion of selective logging, typical for countries with lower deforesta-
tion rates (Pearson et al., 2014). Comparisons with other datasets 
(Bullock et al., 2020; Matricardi et al., 2020) show that the degraded 
area estimates used here (Vancutsem et al., 2021) are likely conser-
vative (Figure S13). A scale- dependent but consistent definition of 
forest degradation would greatly aid comparisons of these aggre-
gate drivers of carbon loss as well as facilitate inclusion in carbon 
budgets, and national inventories.

Brazil's comparatively large AGC losses since 2011 have been ev-
idenced by multiple prior studies (Silva Junior, Aragão, et al., 2020; 
Smith et al., 2021; Xu et al., 2021), though one shows an AGC in-
crease in the most recent years (Xu et al., 2021). Despite the identi-
fied need for Brazil to curb deforestation, Brazil's recent government 
instead created stimulus for illegal activities such as land- grabbing, 
mining and agriculture in indigenous territories and reductions of 
protected areas (Brito et al., 2019; Rochedo et al., 2018), setting 
Brazil on a course of forest fragmentation and degradation projected 
to cause emissions almost 20- fold higher by 2050 than sustainable 
scenarios (Assis et al., 2022).

Remaining disagreements in the magnitudes of AGC changes 
between L- VOD data and our bottom- up model highlight that track-
ing and attribution of AGC changes in the Amazon at national level 
should be further improved, e.g. by incorporating data from next- 
generation biomass mapping sensors (Global Ecosystem Dynamics 
Investigation (GEDI) (Dubayah et al., 2020), BIOMASS (Le Toan 
et al., 2011)).

Overall, this study delivers a pessimistic assessment of the 
current state of the Amazon forest to sequester carbon and mit-
igate climate change. We deliver further evidence that (i) recent 
upturns in carbon emissions from deforestation are accompanied 
by considerable carbon losses through the cascading effects of 
deforestation including (ii) forest degradation and (iii) high turn-
over of carbon in regrowing secondary forests while (iv) there is 
some indication of old- growth forests becoming a carbon source. 
Urgent action is therefore required to protect and promote the 
carbon stocks in the Amazon, the largest contiguous tropical for-
est on our planet.
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