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This paper presents a map of Africa’s rainforests for 2005. Derived from mod-

erate resolution imaging spectroradiometer data at a spatial resolution of

250 m and with an overall accuracy of 84%, this map provides new levels of

spatial and thematic detail. The map is accompanied by measurements of

deforestation between 1990, 2000 and 2010 for West Africa, Central Africa

and Madagascar derived from a systematic sample of Landsat images—ima-

gery from equivalent platforms is used to fill gaps in the Landsat record.

Net deforestation is estimated at 0.28% yr21 for the period 1990–2000 and

0.14% yr21 for the period 2000–2010. West Africa and Madagascar exhibit a

much higher deforestation rate than the Congo Basin, for example, three

times higher for West Africa and nine times higher for Madagascar. Analysis

of variance over the Congo Basin is then used to show that expanding agricul-

ture and increasing fuelwood demands are key drivers of deforestation in the

region, whereas well-controlled timber exploitation programmes have little or

no direct influence on forest-cover reduction at present. Rural and urban popu-

lation concentrations and fluxes are also identified as strong underlying causes

of deforestation in this study.
1. Introduction
Rainforests cover only 13% of Africa’s landmass [1], but they account for more

than 90% of the carbon stored in the continent’s terrestrial ecosystems [2,3], pro-

vide the habitat for many plant and animal species ([4]; table 1) and play a

significant role in the climate system [5]. Africa’s forests support the direct live-

lihood of 60 million rural people (providing food, medicine, fuel, fibre, non-

timber forest products as well as social and cultural functions) and less directly

support 40 million people living in urban centres in the forest domains [6]. Afri-

ca’s forests, which make up around 20% of the total global tropical rainforest

area [7], are mainly concentrated in the Congo Basin; after the Amazon basin,

this is the world’s second largest contiguous forest zone. The ecological zonation

proposed by the United Nations Educational, Scientific and Cultural Organiz-

ation [8] has three African ecoregions dominated by rainforests: Guineo-

Congolian (in West and Central Africa), East Malagasy (Madagascar) and

AfroMontane (Central and Eastern Africa).

Mapping the extent and monitoring the state of African rainforests is of

paramount importance because their location and condition affect the well-

being of millions of rural and urban people, affect the regional and global

climate, and have significant consequences for biodiversity. Accurate delinea-

tion of forest area and composition along with documentation of dynamics

(such as change in area, inter- and intra-annual seasonal patterns, carbon con-

tent and other geobiophysical variables) provides information for science (e.g.

reducing uncertainty in the carbon cycle) and for policy (e.g. formulation,
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Table 1. Total number of species (mammals, birds, amphibians) and total carbon stock [2] in each of the three regions. The columns ‘threatened’ report the
percentage of species falling in the following categories of the IUCN Red list: Critically Endangered, Endangered, Vulnerable [4].

mammals birds amphibians carbon

total
threatened
(%) total

threatened
(%) total

threatened
(%)

total
(GTonnes) % Africa

Central Africa 493 11.4 1100 1.4 288 15.3 39.2 78.5

West Africa 355 13.2 825 1 193 18.1 5.8 11.6

Madagascar 159 20.8 217 6 219 11.9 1.8 3.6
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implementation, monitoring, reporting and verification).

Forest area and condition information establishes the bound-

ary conditions for hydrological and geochemical cycle studies

and for climate models, yet policy users need the same infor-

mation to formulate and evaluate sustainable development

policies. This nexus is seen at local and global scales in multi-

lateral environmental agreements such as the United Nations

Framework Convention on Climate Change (UNFCCC),

where policies such as reducing emissions from deforestation

and degradation (REDDþ) recognize the role of forests in the

carbon cycle; and the convention on biological diversity

(CBD), which identifies forest habitat loss as a critical driver

of declining biological diversity. While global in scope, the

processes of reporting and verification of policy linked to

UNFCCC and CBD often require local information on land

cover and land-cover changes; in other words, we need to

monitor the forests on local scales globally.

Land-cover information is also needed to measure

the effectiveness of management associated with sustaina-

ble development. Addressing issues such as logging, forest

conservation and restoration, agricultural land expansion,

desertification or watershed degradation will all substantially

benefit from the availability of accurate baseline forest-cover

information. Indeed, the Observatory for Central African

Forests (OFAC), under the auspices of forest ministries in

the region, now report on the ‘state of the forest of the

Congo Basin’ every 2 years [9,10].

Baseline forest-cover information was originally derived

from a combination of aerial photography and field surveys.

The thematic descriptions attached to the resulting classifi-

cations were detailed, but the spatial output had limited

accuracy, especially when aggregated at the continental level

[8]. The advent of earth-observing satellites led to improve-

ments in the spatial integrity and detail of the maps while

retaining levels of thematic content [11]. Since the turn of the

twenty-first century, it has been possible to generate daily

images (albeit complete with clouds) of the entire continent

from satellite systems such as Vegetation (VGT, with 1 km res-

olution), the Medium Resolution Imaging Spectrometer

(MERIS, at 300 m) and Moderate Resolution Imaging Spectro-

radiometer (MODIS, at 1 km to 250 m). Global land cover

mapping exercises, such as the MERIS-based GlobCover

2005, include maps of Africa’s rainforests. But GlobCover’s

Central African mapping is compromised by a limited

number of cloud-free image acquisitions over the region.

More localized products including continental maps [1] and

regional products [12] are based on a greater number of satellite

overpasses, and therefore more opportunities for cloud-free
observation, but these data are still acquired at a coarse resol-

ution of 1 km. Access to higher-resolution satellite imagery

has improved since free and open access was provided to the

Landsat archives. Using these data, continental- and global-

scale sample-based surveys measuring forest cover [13] and

forest-cover change at resolutions of 30 m are now increasingly

undertaken. The European Commission’s Tropical Ecosystem

Environment observation by Satellite (TREES) project is one

example. This project, which has been funded since 1992,

uses Thematic Mapper (TM) and enhanced TM data from

Landsat satellites [14] to provide sample-based information

on changes in the state of the world’s tropical forests [15,16].

The TREES project currently addresses change over three

epochs, 1990, 2000 and 2010, and contributes to the remote sen-

sing survey of the Food and Agriculture Organisation’s Forest

Resource Assessment (FAO-FRA) for 2010 [17].

This paper presents a new wall-to-wall forest map covering

all three of Africa’s rainforest blocks at 250 m resolution using

daily observations from one single year, 2005. The new maps

are accompanied by measures of deforestation made at 30 m

resolution between 1990, 2000 and 2010. Regional drivers of

forest-cover change are also identified and attributed on the

basis of available geospatial data and statistics.
2. Material and methods
(a) Wall-to-wall forest mapping
Using data from MODIS sensors on both the Terra and Aqua sat-

ellites, we assembled four MODIS daily products from collection

version 5 for surface reflectance at 250 and 500 m spatial resolution.

Three spectral bands were used: the red and the near-infrared

(NIR) at 250 m spatial resolution and the middle infrared (MIR)

at 500 m spatial resolution. The imagery covered the entire African

continent for the year 2005.

Production of cloud-free datasets is a significant challenge to

mapping land-cover types in this equatorial region. Quality flags

indicating cloud cover and missing data accompany the daily

MODIS surface reflectance images. Two satellites acquiring data

increase the chance of cloud-free imaging and so we used daily

data from both the Aqua and Terra missions. We then excluded

cloudy/bad data using the mean compositing strategy [18,19].

This averages cloud-free reflectance values [20] to create an annual

cloud-free composite image for 2005. This compositing method

reduces directional reflectance effects and limits any remaining

atmospheric perturbations and cloud contamination. The MIR chan-

nel was resampled using the nearest-neighbour rule to match the

250 m of the red and NIR channels to generate a final three-band

mosaic output.
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As a first classification step, we used an empirically derived

Normalized Difference Vegetation Index (NDVI) threshold to

identify and exclude open dry forests, savannas, bare soils and

water surfaces. Then, an unsupervised classifier, ISODATA, was

run on the red, NIR and MIR bands of the remaining data. The

resulting classes were interpreted based on field knowledge, refer-

ence maps [1,21,22], high spatial resolution images (better than 5 m)

and temporal profiles from our 730 daily MODIS images from 2005.

These results were then clustered into four final classes: lowland

rainforest (more than 70% of tree cover on non-flooded soil),

swamp forest (flooded forests with more than 70% of tree cover),

rural complex (10–30% tree cover and more than 50% croplands)

and other land cover (any remaining savanna, croplands . . . ).

Classification accuracy was then assessed by an independent

expert, using high-resolution imagery (1–4 m) from Google Earth

as a surrogate for ground data [23]. In total, 320 points were

interpreted in the four land-cover classes.
B
368:20120300
(b) Forest-cover change assessment
To quantify changes in forest cover, we followed the TREES/

FAO-FRA approach [24]. This uses Landsat image extracts of

10 � 10 km from a systematic sample on each latitude/longitude

degree intersect over three epochs: 1990, 2000 and 2010. This

gave a total sample of 285 points systematically distributed

across Africa’s rainforests. Of these, 256 sites were covered by

good-quality image pairs between the various epochs: 173 over

Central Africa, 67 over West Africa and 16 over Madagascar. The

28 missing samples were mostly located in cloudy areas over

the coastal regions of Gabon, Equatorial Guinea and Cameroon.

While our target epochs were 1990, 2000 and 2010, persistent

cloud cover, limited data acquisitions and satellite failures required

each epoch to be constructed from imagery spanning some

years either side of the target year. The mean acquisition date and

range for the three epochs are respectively 11 August 1987

(1984–1994), 31 March 2001 (1996–2003) and 28 March 2010

(2008–2011). Image acquisition was particularly limited for the

2010 epoch following technical problems with Landsat 7 post-

2003. In consequence, the 2010 epoch was constructed using

Landsat plus additional satellite sources; Disaster Monitoring

Constellation (DMC) accounted for 43% of the images used,

SPOT-4 and 5 HRV (15%) and Landsat TM the remaining 42%.

Forest-cover changes over the period 1990–2000–2010 were

then estimated using the TREES object-based processing chain.

This includes different steps using multi-date Landsat imagery

[25,26]: visual screening of best available images from the entire

Landsat open archive, co-registration, calibration, cloud and

shadow masking, segmentation, change detection and classifi-

cation [25,27]. This processing chain was adapted for the DMC

and SPOT samples used in the 2010 epoch [28]. The minimum

mapping unit was 5 ha. The final legend used the following aggre-

gation rules: tree cover (at least 70% tree cover portion in segment),

tree cover mosaic (30–70% tree cover portion), other wooded land

(at least 70% shrubs, forest regrowth), other vegetation cover

(including croplands, herbaceous and bare lands) and water. We

defined deforestation as the conversion of tree cover and half of

the tree cover mosaic into one of the other land-cover classes:

reforestation and/or afforestation were defined as the opposite.

Experts from each region then checked the resulting land-cover

maps, and recoded classes wherever they encountered misclassifi-

cations from the automatic chain. Forest-cover change could then

be measured by comparing the quality-controlled image pairs

between 1990 and 2000 and between 2000 and 2010 at each

degree sample location.

Four correction steps were applied to give the same sampling

probability to each site and respect the reference dates. First, as

images were acquired at different dates around our epoch

target years, the land-cover changes matrices were linearly
adjusted to a common reference date of 30 June for 1990, 2000

and 2010. This is based on the assumption that land-cover

change rates are constant during any given period [16]. Second,

any remaining cloudy areas in a particular sample were considered

as an unbiased loss of data, and assumed to have the same pro-

portions of land cover as the non-cloudy areas within the same

site. This was achieved by converting the land-cover change

matrices to area proportions relative to the total cloud-free land

area of the sample site. Third, where sample sites were completely

missing, we used a local average from surrounding sample sites as

surrogate results. Fourth, we had to correct for changing sample

probability with latitude; our sample sites are taken at each

degree latitude/longitude intersection, and owing to the earth’s

curvature, the sampling probability increases with latitude,

which leads to higher-intensity sampling in higher latitudes.

To correct for such unequal sampling probability, sample sites

were given a weight equal to the cosine of the latitude for

producing the land-cover change matrix over the whole region.

For the study area, the total land-cover area can be extrapolated

from the average proportion using the Horvitz–Thompson direct

expansion [16,29,30]. The total class area Zc is obtained from:

Zc ¼ D�yc;

where D is the total area of the study region. The standard error

(s.e.) is then calculated as:

s.e. ¼ s
ffiffiffi

n
p ;

where n is the total number of available sample sites and s is an

estimator of the s.e. based on local variance estimation.

Finally, the annual change rates were calculated by dividing

the total change area by the time period and by the total cover

area averaged between the two dates.
(c) Deforestation drivers and underlying factors
To assess the relative importance of drivers of deforestation

in Africa, we followed Geist & Lambin’s theoretical frame [31].

A series of geospatial datasets documenting recognized drivers

of deforestation (agricultural expansion, infrastructure deve-

lopment, timber extraction and fuelwood extraction) were used

along with evidence concerning underlying causes (demographic

pressure, economy, political instability and governance). We also

considered the efficiency of designated protected areas as pro-

tection against deforestation. Statistical analysis of these with

reference to the individual sample points used for the forest-

cover change assessment described above could then be carried

out. However, the paucity of reliable geospatial data associated

with the known drivers imposed some limitations to this.

Timber extraction statistics were available for logging con-

cessions reporting to OFAC [10], and official protected area

boundaries were available from IUCN [32]. However, too few of

our forest-cover sample points from the systematic sample grid

intersected with either logging concession or protected areas to com-

pute reliable statistics. In this case, we support our analysis using a

localized but more intensely sampled study in Central Africa [33].

More complete datasets could be obtained for agricultural

expansion, as gridded information on cropland proportions was

available [34]. Infrastructure development (principally road

networks and urban development) datasets were incomplete.

However, the spatial pattern of cropland areas in Central Africa

follows old road networks [11], and so the cropland analysis, in

part, integrates road density. This is particularly evident in the

Democratic Republic of Congo (DRC) where cropland mosaics

match road networks established in the colonial period. Infrastruc-

ture elements were also incorporated into our metric concerning

influence of urban populations, which we approximate through

the travel time to the closest city of more than 50 000 people [35].
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Figure 1. Spatial distribution of the African rainforests derived from MODIS data.

Table 2. Forest area for the large forested African countries (and total area
for the main regions in italic), estimated from the MODIS-derived map.

country humid rainforests (31000 ha)

Democratic Republic of Congo 107 181

Gabon 22 416

Congo 20 932

Cameroon 20 037

Central African Republic 5833

Equatorial Guinea 2163
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Finally, we extracted the rural population from population

density maps [36].

To reduce the impact of pre-existing deforestation on sub-

sequent analysis, we first eliminated forest-cover sample points

with less than 20% forest cover. We then extracted the deforesta-

tion rate for each of the remaining 150 sample points and

combined this with the following metrics: area covered by crop-

lands, travel time to cities and population density. Then, we

conducted statistical analysis separately for each parameter. We

ranked the entire population of samples by increasing value of

each parameter and we divided the entire dataset into six homo-

geneous groups of 25 samples. An analysis of variance was then

conducted over the deforestation area observed in the six groups

separately for each parameter.

Central Africa 178 564

Liberia 4552

Nigeria 3158

Cote d’Ivoire 1530

Ghana 1487

other countries 1273

West Africa 12 002

Madagascar 4385

Eastern Africa 4876

total Africa 199 829
3. Results
(a) Forest mapping
Figure 1 shows the spatial distribution of Africa’s rainforests.

Independent validation of the map indicates an overall

accuracy of 83.75%, with users’ and producers’ accuracies

of 87% and 85.2%, respectively, for the lowland rainforest,

and 81.6% and 98% for swamp forest. Table 2 provides the

forest-cover area by country. Central Africa accounts for

89% of Africa’s rainforests, and the DRC alone contains

some 53.6%. East African countries with Afromontane forests

(Ethiopia, Kenya, Tanzania and Uganda) represent only 2%

of the rainforests—though these countries do have large

areas of dry forest [1].

Results of our map’s thematic and spatial attributes are

also examined through visual comparison with previously

published maps [12,13,37], shown in figure 2. As expected,

the Landsat-derived map [13] shows finer spatial resolution

and depicts detailed linear features, but does not distinguish

swamp from lowland forests. Comparison with the MERIS-

based GlobCover 2005 highlights the benefit of our data

stream from two satellites’ overpasses per day in reducing

cloud contamination; the cloud-induced salt-and-pepper

effect evident in GlobCover 2005 is absent from our new map.
The synthesis map [12] is very similar to our product in this

region, whereas in coastal Cameroon and Congo the main

source of data used for the mapping had a 1 km resolution,

which clearly impairs the spatial quality of the map.
(b) Forest monitoring
Table 3 shows estimates of net deforestation for Africa’s three

main rainforest regions. Figure 3 illustrates deforestation ‘hot

spots’ for West Africa, Madagascar and the fringes of the

Congo Basin. Africa lost 0.59 million hectares of rainforest



lowland rain forest swamp forest

rural complex water bodies0 50 100 km

(a)

(b)

(c)

(d)

(e)

( f )

Figure 2. Comparison of the satellite images and forest-cover maps over the region of Lisala-Bumba (DR Congo). (a) MODIS colour composite; (b) Landsat colour
composite; (c) MODIS-derived map (our study); (d ) Landsat-derived map [13]; (e) GlobCover map [22] and ( f ) synthesis map [12].
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annually between 1990 and 2000, which decreased to 0.29

million hectares a year between 2000 and 2010. Central

Africa accounts for 50–60% of the total deforested area, but

the annual deforestation rates per se are much lower than in

the other two regions (table 3). The initial forest area used

for the estimates of the rates is extrapolated from the samples,

and can differ slightly from the area measured on the forest-

cover map owing to cloud-cover and missing samples. In all

three regions, deforestation decreased by between 37% and

67% between 2000 and 2010 with respect to the 1990–2000

period (figure 4). Madagascar is an exception, and deforesta-

tion in this region remains high. However, note that the

limited number of samples in Madagascar increases the con-

fidence interval for the results. To a lesser extent, this also

holds true in West Africa. It is also evident that our systematic

sampling method is not optimum for measuring deforesta-

tion in the highly fragmented pattern of forest patches so

characteristic of the Afromontane domain.

At 0.59 million ha yr21, the area of deforestation for

Africa for the period 1990–2000 may seem large. However,

this is four times smaller than the area lost in Latin America

[38]; at 0.3% yr21, the rate of loss too is lower for Africa

than Latin America, with the latter losing its forest at

around 0.4% yr21.

(c) Deforestation drivers and underlying factors
Expansion of cropland area, increasing urban population

and associated expansion of urban infrastructure all bring

forested areas into closer proximity with urban boundaries.
This, in turn, increases human access to forested areas. With

high levels of significance ( p , 0.001), our analysis confirms

all three processes as key drivers of deforestation.

Figure 5a shows that deforestation dramatically increases

when rural population density exceeds 8.5 people per km2.

The influence of urban population on deforestation is

approximated by travel time to the closest city of 50 000

people [35]. Figure 5b shows a regular decrease in deforesta-

tion with increasing travel times up to 6 h. This slows slightly

from 7 to 16 h of travel time, and deforestation is close to zero

for samples at more than 13 h of travel time.

Figure 5c illustrates the strong relationship between crop-

land proportion and deforestation. Deforestation increases as

soon as cropland proportion reaches 5% of the sample, and

this relationship becomes extremely important once cropland

proportion exceeds 20%.

Figure 5d shows the relationship between deforestation

rates and the area of logging concessions. The intensity of log-

ging concessions does not appear to accelerate deforestation

rates in this region.
4. Discussion
(a) Forest mapping
Table 2 reaffirms the dominance of the Congo Basin concerning

Africa’s rainforest distribution. This largely coherent forest area

in Central Africa contrasts markedly with the more fragmented

forests in West Africa, East Africa and Madagascar. The
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patterns of this fragmentation differ from region to region.

In East Africa, forest-cover fragmentation is linked to topogra-

phy; the dense humid forests follow the high ground in the

mountainous areas. In West Africa, the forest patches are the

remnants of a more massive block, which has been heavily

deforested since the middle of the twentieth century [39]. In

Madagascar, the linear pattern results from the conjunction

of topography and intense deforestation owing to agriculture

and mining.

(b) Forest monitoring
On the basis of our estimates, the Congo Basin shows a lower

deforestation rate than other tropical forest regions of the world

[15]. In consequence, the contribution of Africa to carbon dioxide

emissions owing to deforestation is limited with respect to

southeast Asia and Latin America, and the future REDDþ
mechanisms must take into account this particularity [40].

With rare exceptions in West Africa, we do not observe

massive deforestation over large contiguous areas planned

for huge agro-business plantations (oil palm, rubber).

The deforestation hot spots observed between 1990 and

2010 in this study, based on a systematic sample of satellite

images, correspond extremely closely to an earlier map of

hot spots based on experts’ opinion [41]. In all three African

regions, deforestation has slowed down post-2000, though

continues to remain higher in West Africa and Madagascar

than in Central Africa. These regional differences could, in

part, be explained by differential population pressure:

the population density in Central Africa for samples with

more than 20% forest cover is two times lower than in Mada-

gascar and eight times lower than in West Africa.

A comparison was conducted with results of Potapov

et al. [13] on DRC, where a deforestation of 0.25% yr21 was

measured between 2000 and 2010 for humid forests, which

is slightly higher than our estimates on the entire basin, but

other studies showed a higher deforestation rate in DRC

than in the other Congo Basin countries [42].

(c) Deforestation drivers and underlying factors
Geist & Lambin [31] considered three main causes of defores-

tation to be agricultural expansion, wood extraction and

infrastructure. Their results showed that expansion of agricul-

tural lands was the lead direct cause of deforestation but also

that no single cause ever operated alone, stating ‘it is a striking

feature of reported cases that no causation by single variables,

but rather synergistic factor combinations are important’ [31,

p. 23]. Their sample for the Congo Basin region was, however,

very limited (two cases in southeast Cameroon, one case in

northeast and one in southeast DRC). With our much larger

systematic sample, we can empirically identify the main drivers

of deforestation in our region. Our data allow us to highlight the

role, importance and thresholds of two major combinations: (i)

rural population, shifting agriculture and logging, and

(ii) urbanization and fuelwood extraction.

(i) Rural population, shifting agriculture and logging
As shown in figure 5c, deforestation becomes significant once

croplands account for around 10% of the area in 2000 and

increases sharply above this threshold. Cultivation follows

two main patterns in the Congo Basin: ‘diffuse’ (characterized

by small, dispersed openings corresponding to traditional

shifting cultivation) and ‘corridor’ (small-to-medium
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contiguous openings, which follow the road network linking

villages and human settlements—a result of the policies from

colonial powers continued by independent states). We have

anecdotal evidence that the diffuse pattern is getting less and

less common, whereas corridor patterns now dominate. Pre-

vious work [31] has established that agriculture does not act

alone and that the ‘agriculture–population’ combination is a

prominent cause of deforestation. With a population growth

rate of between 1.8% yr21 in Central African Republic and

2.8% yr21 in DRC, the demand for agricultural land will dras-

tically increase in the next 20 years (unless technology for

agricultural intensification significantly improves) and,
unfortunately, agricultural land is likely to expand at the

expense of forest [43]. Our data show that deforestation drasti-

cally increases when rural population exceeds 8.5 people per

km2 (figure 5a). This result is consistent with earlier work in

Central Africa that identified a population density threshold

of eight people per km2 as a value above which deforestation

rates accelerated [33].

A population density of 10–15 persons km22 is reached in

many forested areas through the intrinsic increase in population

and because of the migration of rural populations towards

cities. People move closer to roads to benefit from improved

access to markets (as well as other elements of urban infrastruc-

ture such as schools and healthcare). This population density

increase is incompatible with traditional shifting cultivation

practices and long fallow periods. Reducing shifting cultiva-

tion theoretically reduces new clearings of primary forests,

but it also curtails regrowth on fallow land, because the land

is never left fallow. This, in turn, reduces soil fertility, which

leads to food insecurity [44]. But as population density con-

tinues to increase and agricultural intensification fails to take

hold, so actual deforestation and degradation will continue as

the need for more cropland rises [45]. In the near future, the

increasing international demand for commodities such as

coffee, cocoa, rubber or oil palm is also likely to increase the

demand for agricultural land. Given the evident dominance

of the corridor pattern of deforestation, we can reasonably con-

clude that road network density is an important factor. As the

presently limited road network expands (for whatever purpose,

be it logging, mining or linking settlements), this will render

large blocks of currently inaccessible forests accessible—and

access to forests has been identified as a key factor facilitating

deforestation [46]. In the Congo Basin, the most rapidly chan-

ging area has been northern Congo, where the rate of road

construction increased from 156 km yr21 for the period 1976–

1990 to over 660 km yr21 after 2000 [47], as shown in figure 3.

It is possible to control access to logging or mining roads and

to mitigate part of the threat but not to remove it comple-

tely—a complete ban on road building would significantly

reduce the development prospect of many remote areas.
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We have shown that samples with a population reaching

a threshold of 8.5 people km22, and/or an area of agricultural

land above 10% associated with the road network were sig-

nificantly more deforested than samples below these

thresholds. We need to add wood extraction to these factors.

In rural areas, wood is extracted for construction and service

(poles) and for woodfuel (fuelwood usually, sometimes char-

coal)—neither are considered important deforestation factors

in the literature, yet logging is. This assertion is not supported

by our results. Figure 5d shows that for our samples defores-

tation does not vary as a function of the area of occupied by

logging concessions. This relatively low impact of logging

operations on deforestation can be due to the recent efforts

of the Congo Basin countries towards sustainable forest man-

agement [48], a view also confirmed by other studies [49].

The first of Central Africa’s forest management plans was

implemented by Cameroon in 2000, which currently has

over 14 million ha of forest concessions managed in accord-

ance with state-approved plans [6]. Certification has also

demonstrated significant progress in Gabon, Cameroon and

Congo, from zero certified forests in 1995 to 4.8 million hec-

tares in 2010 [10]. International initiatives promoting legal

exploitation also have a positive effect on forest management.

However, the opening of roads in a completely intact forest

area may provoke deforestation sometime in the future;

monitoring such ‘delayed deforestation’ requires datasets

spanning many years.
(ii) Urbanization, permanent agriculture and fuelwood extraction
(charcoal)

We approximated the influence of urban populations using

travel time to the closest city of 50 000 people or more [35].

Figure 5b shows a clear pattern with two apparent inflexion

points: deforestation between 2000 and 2010 was very high

when less than 5 h from a city, almost nil when more than 12 h

from a city and stable in between. The curve illustrates the

‘island’ pattern of deforestation described by Mertens &

Lambin [50] for peri-urban areas. Five hours corresponds to a

daily return trip and could be considered as a permanently defor-

ested (either cultivated or extensively degraded) circle around the

city. The plateau between 5 and 12 h could be interpreted as a

combination of shifting agriculture and a provisioning area

that supplies woodfuel to the city. In sub-Saharan Africa,

wood remains the main source of domestic energy and meets

over 80% of needs across all countries [51]; in DRC, wood

energy constitutes more than 95% of total wood production,

with an annual consumption estimated to be 1 m3 per person

[52] and a total production higher than 70 million m3. Forests,

most notably peri-urban forests, play a key role in providing

woodfuel, with charcoal being the fuel of choice, given that it is

much easier to stock, transport and manipulate than fuelwood.

The consumption of charcoal for the city of Kinshasa is estimated

to be the equivalent of 4.8 million m3 of wood, which affects huge

forest areas up to a distance of 300 km from the city [52].
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We have shown the importance of travel time to urban

areas in determining deforestation rates, with thresholds at

5 and 12 h. Future development plans in the region are likely

to include improvements to road and transport infrastructure.

While laudable from many economic perspectives, such

improvements will reduce travel times to cities from surround-

ing regions. Given the pattern shown by our data, this implies a

much bigger threat to remaining forests than envisioned from

the prevailing corridor patterns alone.
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5. Conclusion
The mapping and monitoring of Africa’s rainforests is an

ongoing process, where new techniques and new data continu-

ously improve our knowledge. Unfortunately, threats to these

precious and unique resources also appear equally ongoing. In

this paper, we exploit newly available images and advanced

image processing techniques to derive accurate forest cover

and forest-cover change estimates. However, sensors with
better radiometric quality (Landsat 8) and finer spatial resol-

ution (Sentinel-2) will soon be available, which will allow us

to further refine and improve both maps and measure-

ments. Acquiring data from as many satellite overpasses as

possible directly at African receiving stations should also

improve access to cloud-free images. Many initiatives collect

information on the ground, which can help improve our under-

standing of deforestation drivers. However, further effort is

needed to link spatial modelling with multivariate analysis

analysing deforestation and the different drivers.

African rainforests provide vital resources for local

populations. They support the national economies of many

countries and deliver key global ecosystem services, includ-

ing climate regulation and biodiversity. Future research

should aim at improving our understanding of the inter-

actions between the local, national and global scales and a

range of thematic issues. In the long term, the international

community has to build strong African capacities in order

to give the Continent all the winning cards for defining and

implementing sound forest management policies.
00
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HJ, Brink A, Lindquist E, Achard F. 2011 Pre-processing
of a sample of multi-scene and multi-date Landsat
imagery used to monitor forest cover changes over the
tropics. J. Photogramm. Remote Sens. 66, 555–563.
(doi:10.1016/j.isprsjprs.2011.03.003)

28. Desclée B, Simonetti D, Mayaux P, Achard F. 2013
Multi-sensor monitoring system for forest cover
change assessment in Central Africa. IEEE J. Selected
Top. Appl. Earth Obs. Remote Sens. 6, 110 – 120.
(doi:10.1109/JSTARS.2013.2240263)

29. Gallego J, Bamps C. 2008 Using CORINE land cover
and the point survey LUCAS for area estimation.
Int. J. Appl. Earth Obs. Geoinformation 10,
467 – 475. (doi:10.1016/j.jag.2007.11.001)

30. Brink A, Eva HD. 2009 Monitoring 25 years of land
cover change dynamics in Africa: a sample based
remote sensing approach. Appl. Geogr. 29,
501 – 512. (doi:10.1016/j.apgeog.2008.10.004)

31. Geist H, Lambin EJ. 2001 What drives tropical
deforestation? A meta-analysis of proximate and
underlying causes of deforestation based on
subnational case study evidence. LUCC Report Series
N. 4. Louvain-la-Neuve, Belgium: Diffusion
Universitaire CIACO.

32. IUCN. 2009 UNEP. the world database of protected
areas. Cambridge, UK: UNEP-WCMC.

33. Ernst C, Mayaux P, Musampa C, Verhegghen A,
Bodart C, Defourny P. 2013 National forest cover change
in Congo Basin: deforestation, reforestation and
regeneration for the years 1990, 2000 and 2005. Glob.
Change Biol. 19, 1173– 1187. (doi:10.1111/gcb.12092)

34. Vancutsem C, Marinho E, Kayitakire F, Linda S, Fritz
S. 2013 Harmonizing and combining existing land
cover/use datasets for cropland areas monitoring
at the African continental scale. Remote Sens. 5,
19 – 41. (doi:10.3390/rs5010019)
35. Nelson A. 2008 Estimated travel time to the nearest
city of 50,000 or more people in year 2000. Ispra,
Italy: Joint Research Centre of the European
Commission.

36. Linard C, Gilbert M, Snow RW, Noor AM, Tatem AJ.
2012 Population distribution, settlement patterns
and accessibility across Africa in 2010. PLoS ONE
e31743. (doi:10.1371/journal.pone.0031743)

37. Mayaux P, Vancutsem C, Pekel J-F, de Wasseige C,
Defourney P, Hansen MC, Mane L. 2012 A
continental and regional approach for improving
land-cover maps of Africa. In Remote sensing of land
use and land cover: principles and applications.
(ed. C Giri), pp. 265 – 274. Boca Raton, FL: CRC
Press.

38. Eva HD et al. 2012 Forest cover changes in tropical
south and Central America from 1990 to 2005 and
related carbon emissions and removals. Remote
Sens. 4, 1369 – 1391. (doi:10.3390/rs4051369)

39. FAO. 1993 Forest resources assessment 1990 —
tropical countries. FAO forestry paper no. 112.
Rome: FAO.

40. Bucki M, Cuypers D, Mayaux P, Achard F, Estreguil C,
Grassi G. 2012 Assessing REDDC performance of
countries with low monitoring capacities: the matrix
approach. Environ. Res. Lett. 7, 014031. (doi:10.
1088/1748-9326/7/1/014031)

41. Achard F, Eva H, Glinni A, Mayaux P, Richards T,
Stibig HJ. 1997 Identification of deforestation
hot spot areas in the humid tropics. Research
Report No 4. Report no.: EUR 18079. European
Commission.

42. Duveiller G, Defourny P, Desclée B, Mayaux P. 2008
Deforestation in Central Africa: estimates at regional,
national and landscape levels by advanced
processing of systematically-distributed Landsat
extracts. Remote Sens. Environ. 112, 1969 – 1981.
(doi:10.1016/j.rse.2007.07.026)

43. Alcamo J, Schaldach R, Koch J, Kölking C, Lapola D,
Priess J. 2011 Evaluation of an integrated land use
change model including a scenario analysis of land
use change for continental Africa. Environ. Model.
Software 26, 1017 – 1027. (doi:10.1016/j.envsoft.
2011.03.002)

44. Tollens E. 2010 Potential impact of agricultural
development on the forest cover in the Congo Basin.
Washington, DC: The World Bank.

45. Fisher B. 2010 African exception to drivers of
deforestation. Nat. Geosci. 3, 375 – 376. (doi:10.
1038/ngeo873)

46. Wilkie D, Shaw E, Rotberg F, Morelli G, Auzel P.
2000 Roads, development, and conservation in the
Congo Basin. Conserv. Biol. 14, 1614 – 1622. (doi:10.
1046/j.1523-1739.2000.99102.x)

47. Laporte N, Stabach J, Grosch R, Lin T, Goetz S.
2007 Expansion of industrial logging in Central
Africa. Science 316, 1451. (doi:10.1126/science.
1141057)

48. Cerutti P, Tacconi L, Nasi R, Lescuyer G. 2011 Legal
vs. certified timber: preliminary impacts of forest
certification in Cameroon. Forest Policy Econ. 13,
184 – 190. (doi:10.1016/j.forpol.2010.11.005)

49. Laurance W et al. 2012 Averting biodiversity
collapse in tropical forest protected areas. Nature
489, 290 – 294. (doi:10.1038/nature11318)

50. Mertens B, Lambin EF. 1997 Spatial modelling of
deforestation in southern Cameroon: spatial
disaggregation of diverse deforestation processes.
Appl. Geogr. 17, 143 – 162. (doi:10.1016/S0143-
6228(97)00032-5)

51. Tutu K, Akol C. 2009 Reversing Africa’s deforestation
for sustainable development. In Appropriate
technologies for environmental protection in the
developing world (ed. EK Yanful), pp. 25 – 34.
Amsterdam, the Netherlands: Springer.

52. Schure J, Marien JN, de Wasseige C, Drigo R,
Salbitano F, Dirou S, Nkoua M. 2012 Contribution of
woodfuel to meet the energy needs of the
population of Central Africa: prospects for
sustainable management of available resources. In
The State of the forests of the Congo Basin
(COMIFAC) (eds C de Wasseige et al.), pp. 109 – 122.
Luxembourg: Publication Office of the European
Communities.

http://dx.doi.org/10.1109/JSTARS.2012.2217733
http://dx.doi.org/10.1016/j.isprsjprs.2011.03.003
http://dx.doi.org/10.1109/JSTARS.2013.2240263
http://dx.doi.org/10.1016/j.jag.2007.11.001
http://dx.doi.org/10.1016/j.apgeog.2008.10.004
http://dx.doi.org/10.1111/gcb.12092
http://dx.doi.org/10.3390/rs5010019
http://dx.doi.org/10.1371/journal.pone.0031743
http://dx.doi.org/10.3390/rs4051369
http://dx.doi.org/10.1088/1748-9326/7/1/014031
http://dx.doi.org/10.1088/1748-9326/7/1/014031
http://dx.doi.org/10.1016/j.rse.2007.07.026
http://dx.doi.org/10.1016/j.envsoft.2011.03.002
http://dx.doi.org/10.1016/j.envsoft.2011.03.002
http://dx.doi.org/10.1038/ngeo873
http://dx.doi.org/10.1038/ngeo873
http://dx.doi.org/10.1046/j.1523-1739.2000.99102.x
http://dx.doi.org/10.1046/j.1523-1739.2000.99102.x
http://dx.doi.org/10.1126/science.1141057
http://dx.doi.org/10.1126/science.1141057
http://dx.doi.org/10.1016/j.forpol.2010.11.005
http://dx.doi.org/10.1038/nature11318
http://dx.doi.org/10.1016/S0143-6228(97)00032-5
http://dx.doi.org/10.1016/S0143-6228(97)00032-5

	State and evolution of the African rainforests between 1990 and 2010
	Introduction
	Material and methods
	Wall-to-wall forest mapping
	Forest-cover change assessment
	Deforestation drivers and underlying factors

	Results
	Forest mapping
	Forest monitoring
	Deforestation drivers and underlying factors

	Discussion
	Forest mapping
	Forest monitoring
	Deforestation drivers and underlying factors
	Rural population, shifting agriculture and logging
	Urbanization, permanent agriculture and fuelwood extraction (charcoal)


	Conclusion
	References


