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Preface 54 

There is much interest in using Earth Observation (EO) technology to track biodiversity, 55 

ecosystem functions, and ecosystem services, understandable given the fast pace of 56 

biodiversity loss. However, because most biodiversity is invisible to EO, EO-based 57 

indicators could be misleading, which can reduce the effectiveness of nature 58 

conservation and even unintentionally decrease conservation effort. We describe an 59 

approach that combines automated recording devices, high-throughput DNA 60 

sequencing, and modern ecological modelling to extract much more of the information 61 
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available in EO data. This approach is achievable now, offering efficient and near-real-62 

time monitoring of management impacts on biodiversity and its functions and services. 63 

Meeting the Aichi Biodiversity Targets 64 

From Google Earth to airborne sensors, the Copernicus Sentinels, and cube satellites, 65 

Earth Observation is undergoing a rapid expansion in capacity, accessibility, resolution, 66 

and signal-to-noise ratio, resulting in a recognised shift in our capability for using 67 

remote-sensing technologies to monitor biophysical processes on land and water1-3. 68 

These advances are motivating calls to use Earth Observation products to manage our 69 

natural environment and to track progress toward global and national policy targets on 70 

biodiversity and ecosystem services4-6. Foremost among these policies are the Strategic 71 

Plan for Biodiversity and the Aichi Biodiversity Targets, which were adopted in 2010 by 72 

the Parties to the Convention on Biological Diversity (CBD) to “take effective and urgent 73 

action to halt the loss of biodiversity in order to ensure that by 2020 ecosystems are 74 

resilient and continue to provide essential services…”7. The United Nations Sustainable 75 

Development Goals8 now include some of the Aichi Targets, and the 2015 Paris 76 

Agreement has reiterated the commitments of the UN Framework Convention on 77 

Climate Change to reducing emissions from deforestation and forest degradation 78 
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(REDD+) and to securing non-carbon benefits, which include biodiversity and ecosystem 79 

services9. 80 

However, we have struggled to track and report progress toward the Aichi Targets in a 81 

standardised and comprehensive way10. Although almost two-thirds of the CBD Parties 82 

have updated their National Biodiversity Strategies and Action Plans to reflect the 2010 83 

revisions, many still do not contain measurable indicators on the state of biodiversity, let 84 

alone ecosystem services. This lack of quantification conceals the impacts of policy and 85 

management interventions on biodiversity and ecosystem functions and services11. The 86 

difficulty of designing indicators12-14 has prompted an international consortium of 87 

biodiversity scientists called GEO BON (Group on Earth Observations’ Biodiversity 88 

Observation Network) to propose a framework of Essential Biodiversity Variables15, with 89 

the aim of setting minimum standards of coverage to ensure informativeness and to 90 

harmonise disparate local measures so that biodiversity and ecosystem data can be 91 

compared over space and time. The Essential Biodiversity Variables thus measure the 92 

‘state of biodiversity’ at multiple levels:  genetic composition, species populations, 93 

species traits, community composition, ecosystem structure, and ecosystem function15.  94 

Although it was originally envisioned that most of the variables (genetic to community 95 

composition) would be scaled up from “intensive in-situ measurements”15 taken on the 96 
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ground, such measurements are costly and difficult because they are traditionally 97 

gathered by visual and aural detection of plants and animals in the wild (preceded by 98 

months or years of observer practice) and by mass collection of organisms (followed by 99 

months of identification from morphology), so that data collection is slowed by human-100 

caused bottlenecks in sampling and taxonomy16. 101 

As a result, attention is now being focused on designing ‘Satellite Remote Sensing-102 

Essential Biodiversity Variables’ (SRS-EBVs) to enable cost-effective and global-scale 103 

monitoring5,6,12. The problem here is that only a few Earth Observation products can be 104 

mapped directly to Essential Biodiversity Variables and then to Aichi Targets, because 105 

these products primarily measure gross vegetation and landscape metrics, such as land 106 

cover and phenology4. For example, Pettorelli et al.12 found only two Earth Observation 107 

products (net primary productivity and fire incidence) that could serve as Essential 108 

Biodiversity Variables for the Sahara, despite this biome’s suitability for remote sensing 109 

due to its visible biodiversity hotspots, remoteness, and availability of long time series. 110 

Many of the Aichi Targets require data with species-level resolution, either because some 111 

species are direct policy targets (e.g. Target 9: “invasive species controlled or eradicated”) 112 

or because species compositional data define the metric (e.g. Target 11: “protected areas 113 

are ecologically representative and conserved effectively”).  114 
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Clearly, a radically new approach is required if progress towards the Aichi Targets is to 115 

be accelerated, one that is robust, widely affordable, and can record stocks and changes 116 

in biodiversity and ecosystem services consistently, continuously, and at high resolution 117 

over large geographic scales. Here, we present such an approach in a framework that 118 

exploits recent efficiency gains and analytical breakthroughs in sensors, computation, 119 

ecology, taxonomy, and genomics (Figure 1, Box 1). 120 

 121 

 122 

Box 1. Inferring a Hidden Ecosystem Function from Space 123 

Large-bodied Amazonian monkeys are responsible for a key ecosystem function: they are 124 

the primary dispersers of large seeds, which are associated with more carbon-dense tree 125 

species. Peres et al.17 have proposed that this function boosts forest carbon storage. The 126 

idea can be tested by using Earth Observation data and public records to map human 127 

settlements and transport corridors and predict where monkey populations have 128 

declined through hunting17,18. We can then use on-the-ground sampling and airborne 129 

sensors to test whether forests that have had longer exposure to hunting lack monkey 130 

populations and have more low-carbon-density tree species dispersed by wind and birds. 131 

In short, by combining Earth-Observation-derived maps of human activity with empirical 132 

observations of the response of primate populations to that activity, it should be 133 
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possible to map and track an ecosystem function (large-seed dispersal) that is invisible to 134 

satellites but contributes to an important ecosystem service (climate regulation).  135 

 136 

 137 

From Point Samples to Continuous Maps 138 

Instead of trying to map Earth Observation (EO) products directly to biodiversity, as 139 

encapsulated by SRS-EBVs4-6,12, we propose to extract more information from EO data by 140 

interpolating biodiversity point samples to build continuous landscape maps of species 141 

distributions (Figure 1)19. Because it is species that are mapped, it then becomes possible 142 

to layer on the vast biological knowledge that we have collectively built up over decades 143 

of research, including historical distributions, phylogenetic relationships, and knowledge 144 

of species traits and interactions to infer, map, and track the distributions of ecosystem 145 

functions and services (Box 1). This approach, which we call here CEOBE (Connecting 146 

Earth Observation to Biodiversity and Ecosystems), is possible because of (1) major 147 

advances in EO sensitivity and capacity, (2) more efficient techniques to collect 148 

biodiversity data on the ground, and (3) modern community-analysis models from 149 

statistical ecology. We now review each of these advances, with additional detail in 150 

Supplementary Information. 151 
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The New Era of Earth Observation 152 

There are ten times as many satellites in operation now as there were in the 1970s, a 153 

result of increasing sensor longevity and a six-fold increase in launches20. Spatial 154 

resolution has improved to less than 1 m in both optical and radar sensors. Data 155 

continuity is also being maintained, most directly by the launch of NASA’s Landsat 8 in 156 

2013, which extends and technically enhances the 40-year Landsat record of medium-157 

resolution, multispectral surface observations21. Data continuity is a key factor in 158 

understanding changes in biodiversity, as threats to biodiversity impact at a range of 159 

scales and often across lengthy timespans22. 160 

The long-term Landsat record is being enhanced by new satellite systems and multiple 161 

sensors in a global network, a ‘virtual constellation’ that may help overcome problems in 162 

terrestrial monitoring from single sensors2. As part of the Copernicus program, the ESA 163 

Sentinel satellites are the latest addition to the global network. With six missions planned 164 

and the first three launched, the Sentinels have radar, optical sensors, radiometers, and 165 

spectrometers with different goals23. Sentinel-1, the radar satellite, and Sentinel-2, the 166 

superspectral high-resolution mission, are of particular interest to biodiversity 167 

monitoring, with long-term continuity of measurements, global coverage, and quick 168 

revisit times 24,25. 169 
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There have also been developments in hyperspectral sensors with EnMAP, HyspIRI, 170 

PRISMA, and FLEX imaging spectrometer missions planned1. In addition, airborne data 171 

collection using high-resolution 3D airborne laser scanning is complementing spectral 172 

information with structure26. Swarms of commercial cube satellites and the use of drones 173 

to carry sensors are additional significant steps that complement these large-scale 174 

programs (Supplementary Note 1 “Earth Observation technology”). 175 

The increase in spatial resolution in the new sensors implies greater precision because 176 

reference measurements taken within meter-scale plots on the ground can be matched 177 

directly to meter-scale pixels27. This in turn improves the ability of EO to recognise 178 

spatial gradients and boundaries.  179 

Two additional factors affect the utility of remote sensing data for understanding 180 

biodiversity change (Supplementary Note 2 “Biodiversity and ecosystem information in 181 

EO data”): affordability and access22. There has been a cultural shift, with free open 182 

access on the rise. The opening of the Landsat archive in 2008 was a monumental 183 

development28, with ESA’s Copernicus program following suit. Data access also refers to 184 

the ability of users to retrieve, manipulate, and extract value from EO data. Cloud 185 

computing and toolboxes are making these processes manageable, even with large data 186 

archives. 187 
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The availability of copious EO data that have been shown in multiple studies to correlate 188 

closely with on-the-ground measures of ecosystem structure, habitat condition, and even 189 

animal communities (Supplementary Note 2) might suggest that remote sensors can be 190 

used directly to define environmental indicators, but we must acknowledge that we are 191 

still in the early stages of understanding how biodiversity delivers ecosystem functions 192 

and services, and how they all respond to exogenous change. Directly observing 193 

functional diversity is a partial solution but only with visible biodiversity such as 194 

vegetation26. Thus, the challenge is to find ways to exploit the high efficiency and 195 

information content of EO data while not falling prey to reification fallacy (Box 2), which 196 

can arise when convenient but incomplete indicators are made available29,30. Our 197 

institutions and reporting systems then retain the option to add and respond to new 198 

knowledge. 199 

 200 

 201 

Box 2.  The Perils of Convenient Indicators 202 

If we rely too directly on EO data, we run the risk of reification fallacy, in which a mere 203 

indicator of a policy target itself ends up the target. Reification fallacy can reduce or 204 

narrow conservation effort31 and can crowd out future discoveries32. For example, while 205 

remote sensing is an efficient and direct way to measure forest cover (Aichi Target 5:  206 
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reducing the loss rate of natural habitats), using forest cover and phenology to measure 207 

the contribution of biodiversity to carbon stocks (Target 15)4 would ignore taxa invisible 208 

to satellites and could thus result in policymakers failing to exert the additional effort 209 

that is required to conserve saprotrophic fungal diversity, seed-dispersing mammals, and 210 

the seemingly inconsequential isopod, all of which have been implicated in boosting 211 

carbon storage17,33,34. More generally, land-cover class, which is a common EO-indicator, 212 

is a highly error-prone way to map and assess the complex processes supporting 213 

ecosystem services35. In short, convenient EO products could lead policymakers to focus 214 

only on that portion of biodiversity and ecosystem services that is directly observed by 215 

remote sensing, ignoring the rest. 216 

 217 

High-Throughput Biodiversity Measurement 218 

Most biodiversity, whether animal, fungal, plant, or microbial, and its many functions and 219 

services, is invisible to EO and will remain so for some time. But a growing number of 220 

efficient technologies are available for detecting and identifying biodiversity on the 221 

ground36,37 (Supplementary Note 3 “Biodiversity technology”). Automated bioacoustic 222 

and camera-trap recording devices (ARDs) can run continuously for weeks and 223 

accumulate thousands of records of invertebrates, birds, fish, reptiles, amphibians, and 224 
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mammals, and thus allow extended sampling of large areas at low workloads38-42. 225 

Alternatively, high-throughput DNA sequencers can be used in metabarcoding or 226 

metagenomic pipelines to detect and identify anywhere from one to thousands of 227 

species at a time from mass-collected, bulk samples of organisms (e.g. ‘biodiversity 228 

soups’43), or from ‘environmental DNA,’ which is DNA liberated into the environment in 229 

the skin, hair, mucous, saliva, sperm, eggs, exudates, faeces, urine, blood, spores, root 230 

fragments, leaves, fruit, pollen, or rotting body parts of their original owners44,45 (Figure 231 

2, Supplementary Note 3). Multiple studies have now shown that metabarcode datasets 232 

reflect high-quality, morphologically identified biodiversity datasets sufficiently closely to 233 

allow correct management decisions, given best-practice protocols and controls46-51. 234 

The taxonomic identities, phylogenetic affinities, functional genes52, spectral properties 235 

(of visible vegetation26,53,54), and/or co-occurrence patterns55 of the detected species can 236 

be used to parameterise process-based production functions for ecosystem services56-58 237 

(Figure 1). For instance, the species identities and biomasses of wild bees identified 238 

metagenomically from bulk samples59 could be combined with flower-use observation 239 

data60 and detailed vegetation classification from EO to infer the availability and nature 240 

of local pollination services. Metagenomic data matched to identified species can be 241 

particularly powerful when the impacts of species loss on ecosystem function are not 242 
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random, evidence that has previously relied on intensive field sampling, e.g. in tropical 243 

freshwater61 and marine benthic communities62. 244 

Statistical Modelling as the Bridge 245 

Earth Observation technology can produce large-scale, fine-resolution maps and dense 246 

time series of a wide range of biophysical variables (Supplementary Note 1 and 2), but 247 

it is difficult to translate the biophysical variables into biodiversity information. In 248 

contrast, ARDs and DNA sequencing are capable of generating large amounts of 249 

biodiversity information at species- or even individual-level resolution63,64, but only from 250 

point samples (Supplementary Note 3). Modern methods of statistical modelling allow 251 

us to interpolate these point samples to build continuous species maps and to estimate 252 

emergent metrics such as richness and dissimilarity65-68, potentially also including 253 

estimates of species abundance or biomass, depending on the sampling and analytical 254 

methods used (Supplementary Note 4 “Statistical modelling”).  255 

The three approaches with immediate potential are Joint Species Distribution Models69-72 256 

(including Latent Variable Models), Community Occupancy-Detection Models73, and 257 

Generalised Dissimilarity Models65,74 (Figure 3, Supplementary Note 4). Each approach 258 

starts with a site-by-species matrix, from data that have been collected by ARDs or been 259 

generated via metabarcoding or metagenomics (Figure 2, Supplementary Note 3), plus 260 
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any existing species distribution data. If some species are not detected, repeat sampling 261 

can be used to infer missing occurrences73. The site-by-species matrix is then paired with 262 

a corresponding site-by-environmental-covariate matrix, generated from continuous EO 263 

data plus any relevant geographical layers, and the two datasets are combined 264 

statistically to infer the joint distributions of multiple species across entire regions 265 

(Figure 3, Supplementary Note 4). All three approaches also provide a rigorous 266 

framework for quantifying sources of uncertainty and have already been applied 267 

successfully to conventionally acquired datasets (Box 3).  268 

 269 

 270 

Box 3. Current Practice in Community Modelling 271 

Ovaskainen et al.71 used a joint species distribution model to predict the distributions of 272 

55 butterfly species scored for presence/absence on a grid of 2609 10 X 10-km cells 273 

across Great Britain that had been sampled from 1995-1999 in a large citizen-science 274 

project. The model was successfully parameterised with a training dataset of just 300 275 

cells and four environmental covariates (degree-days and three types of vegetation 276 

cover), plus spatially structured latent variables. Latent variables use observed species 277 

subgroupings to detect the effects of unmeasured environmental filters or species 278 

interactions such as competition. The parameterised model was used to predict butterfly 279 
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communities in the testing dataset, which consisted of the remaining 2309 grid cells. 280 

Together, the measured and latent variables explained an average of 42% of the variance 281 

in species occurrence (with medium-prevalence species more accurately predicted), and 282 

the two most dominant latent variables revealed a north-south gradient in species 283 

composition, with especially distinct communities in the southeast and northwest. 284 

Species richness per grid cell was accurately predicted, and the model’s ability to 285 

discriminate presence and absence was high (mean AUC = 0.91).  286 

Kéry and Royle75 used community-occupancy modelling to analyse the 2001 Swiss 287 

breeding-bird survey while accounting for variation in detectability due to season, site, 288 

and species effects. The dataset consisted of 254 1-km2 grid cells, each visited three 289 

times. The fitted model predicted each species’ probability of occurrence as a function of 290 

site elevation and forest cover, as well as variance in the uncertainty of occurrence 291 

estimates, making it possible to estimate species distributions across the landscape and 292 

confidence in those estimates. Parameter estimates were naturally less precise for rare 293 

species, but information could be ‘borrowed’ from data-rich species to increase the 294 

precision of predictions for rare species. These procedures were able to compensate for 295 

the fact that only 134 total bird species had been detected in the survey, which is less 296 

than the true total of 163 species known to breed regularly in Switzerland, plus 22 297 
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occasional residents (the testing dataset). The occupancy-corrected model estimated that 298 

between 1 and 11 species had been overlooked per grid cell and thus, that the true total 299 

in 2001 was 169 species.  300 

Mokany et al.76 applied Generalised Dissimilarity Modelling (GDM) to a dataset of 2330 301 

expert surveys of New Zealand land snails, which recorded 845 of 998 known species. 302 

The GDM was parameterised with a training dataset of 2280 surveys and fourteen 303 

environmental variables and explained 57% of the variation in beta diversity. In addition, 304 

a generalised additive model parameterised on the training dataset explained 27% of the 305 

variation in species richness (after scaling the 20 x 20-m survey quadrats to match the 306 

area of modelling units (200 x 200-m); see discussion of scaling in Supplementary Note 307 

4). Finally, the outputs were combined using a procedure called DynamicFOAM to assign 308 

snail species to communities across New Zealand. Error was assessed by predicting 309 

compositions in a testing dataset of 50 sites that had been held out of the model. On 310 

average, the model was able to predict half the species that had been observed in each 311 

cell, and the predicted total occupancy area per species was highly correlated with the 312 

number of quadrat occurrences (Pearson’s r = 0.902). When quadrats were pooled into 313 

groups of 3 to 400 to reduce sampling stochasticity, predicted species richnesses almost 314 

perfectly explained observed richnesses (R2 = 0.99).  315 
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 316 

 317 

By mapping species distributions as the primary output, we do not lock ourselves into an 318 

arbitrary set of convenient indicators, and ongoing discoveries on the relationship 319 

between biodiversity and function, which are typically carried out at the species level, can 320 

be added. As an illustration, the species diversity of wood-decaying fungi in natural 321 

forests is notoriously difficult to assay but can be predicted in part by the volume and 322 

species diversity of the stock of dead wood on the ground77, and these environmental 323 

covariates are partially quantifiable via airborne LiDAR sensors (Supplementary Note 324 

1)78, thus allowing EO-based inference of the distribution and level of wood-decaying 325 

fungal diversity. Subsequent and unrelated research has suggested that pieces of dead 326 

wood inhabited by a higher diversity of fungal species decompose more slowly, possibly 327 

due to more intense interference competition34. Combining the two results suggests that 328 

an EO-derived map of fungal species diversity could be used to contrast landscape 329 

management options for how well they conserve saprotrophic fungal biodiversity and 330 

thus enhance carbon storage.  331 

Two further reasons for focusing on species-resolution maps as the primary output are 332 

that the regional species pool (gamma diversity) and the biological dissimilarity of sites 333 
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(beta diversity) could contribute to maintaining functional stability58,79,80 and that species-334 

resolution outputs retain the option of aggregation to represent different aspects of 335 

biodiversity, including higher-taxonomic, functional, and phylogenetic groupings81.  336 

Many methods are also available to predict individual species ranges, and EO can help 337 

improve their accuracy, as shown by an example82 combining MODIS satellite data with 338 

environmental DNA to map an invasive diatom over a watershed [Target 9, invasive 339 

species pathway identified] (Supplementary Figure 3.1). However, ecosystem functions 340 

and services are rarely delivered by only one species, and simply summing the outputs of 341 

individual models to simulate communities is computationally inefficient, statistically 342 

flawed, and does not account for species interactions83.  343 

From CEOBE to Aichi 344 

In essence, our argument is that new technologies make the new community-modelling 345 

approaches (Box 3, Figure 3) widely feasible, especially in biodiversity hotspots, where it 346 

is particularly difficult to generate large datasets. Larger numbers of environmental 347 

covariates and species together increase explanatory power by providing a greater 348 

breadth of predictors, and by exploiting latent variables and letting rare species ‘borrow’ 349 

information42,75,84, respectively. As a result, continuous streams of EO data can be more 350 

powerfully interpreted to track biodiversity status and trends (Figure 1).  351 
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The predictive performance of fitted models can be cross-validated by rounds of 352 

comparison with testing datasets that were either split from the model-training 353 

dataset71,76 or derived from historical and expert knowledge75, and thus, the adequacy of 354 

the input data and sampling design, or conversely the degree of model uncertainty, can 355 

be assessed post hoc (Box 3). The regularly updated biodiversity maps that are the 356 

primary outputs of the CEOBE approach (Figure 1), plus the quantified uncertainty in 357 

those maps, can then be incorporated into a larger process of structured decision 358 

making and adaptive management85-87 to (1) identify likely consequences of proposed 359 

actions by observing natural experiments that mimic those actions, (2) compare observed 360 

results of management interventions against objectives, and (3) help identify and tackle 361 

sources of uncertainty. 362 

An early example of the CEOBE approach is given by Sollmann et al.42, who used 363 

community-occupancy modelling to connect environmental covariates from the 5-m-364 

resolution RapidEye satellite to point-sample data from camera traps in three tropical-365 

forest logging concessions in Sabah, Malaysian Borneo, one of which has been managed 366 

to reduced-impact-logging standards set by the Forest Stewardship Council (Aichi Target 367 

7, sustainable management under forestry). The dataset consisted of detection events for 368 

28 mammal species at 166 camera-trap stations, each station scored using EO data for 369 
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distance to water, distance to oil-palm plantation, and forest condition. Estimated 370 

relationships between species occurrence and the three covariates were used to predict 371 

species occurrence across the three reserves, with rare mammal species borrowing 372 

information from more common ones. Species richness was estimated to be higher in 373 

the FSC-certi ed reserve, particularly for threatenefi d species (Target 12, improved 374 

conservation status of threatened species). The percentage of area occupied, which could 375 

indicate larger population sizes, was also estimated to be higher in the FSC-certi ed fi376 

reserve for the majority of species, including for some highly endangered species like the 377 

Sunda pangolin Manis javanica. Finally, the modelled species richness maps were found 378 

to correlate strongly with EO-estimated aboveground biomass at the large spatial grain 379 

of whole reserves, but not at a finer resolution (potentially due to hunting at reserve 380 

borders), further demonstrating the critical contribution of ground-level point samples 381 

for linking pure-EO data to biodiversity.  382 

The major remaining components of uncertainty relate to generalisability, because only a 383 

single FSC-certified reserve was sampled; the applicability of results to arboreal species, 384 

which tend to be detected more frequently in forests with disturbed canopy but are not 385 

necessarily more widespread in these forests; and wide confidence intervals around 386 

parameter estimates for some species as a consequence of sparse data and a fairly 387 
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complex hierarchical model. This example serves as a proof of concept that camera 388 

trapping and occupancy modelling can be used to assess biodiversity conservation based 389 

on species maps, and the approach has been incorporated in the ten-year forest 390 

management plan and wildlife monitoring strategy for the FSC-certified area. Repeated 391 

surveys will help to narrow uncertainties in the model, and a future power analysis is 392 

planned to estimate the sampling effort required to detect trends and/or provide 393 

estimates with a desired level of certainty88. 394 

Another example of the CEOBE approach is the use of Generalised Dissimilarity 395 

Modelling to connect EO-derived metrics of habitat degradation and fragmentation89,90 396 

to over 300 million records of more than 400,000 species from the Global Biodiversity 397 

Information Facility (www.gbif.org) and the Map of Life (mol.org)91. The GDM models 398 

spatial turnover in biodiversity composition at 1-km-resolution globally, and by invoking 399 

the assumption that terrestrial biodiversity declines according to the classical species-400 

area power function, the GDM estimates the proportion of biodiversity that has been 401 

retained in each grid cell after habitat loss, based on the proportion of similar habitat 402 

remaining unimpacted within the landscape92. This metric thus tracks whether rates of 403 

loss, degradation, and fragmentation of natural habitats are being reduced (Aichi Target 404 

5). Further, by combining this approach with a global database of protected-area 405 
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coverage (www.protectedplanet.net), it is possible to report progress against Target 11, 406 

which aims for protected areas to cover areas of particular importance to biodiversity 407 

and ecosystem services and to be ecologically representative and connected (see also 408 

Ref. 93). An important caveat is that the biodiversity data in this case are historical in 409 

nature and thus contain the taxonomic and sampling biases and constraints of the past 410 

(Box 2). Ideally, the biodiversity data will transition to up-to-date, properly sampled, and 411 

more taxonomically comprehensive point samples.  412 

Of course, CEOBE outputs cannot contribute to all Aichi Targets, namely those that are 413 

focused on policy, planning, and funding reform (Targets 2, 3, 4, 20), the conservation of 414 

genetic cultivars (Target 13), the alleviation of climate-change pressures on coral reefs 415 

(Target 10), benefits sharing (Target 16), and the integration of traditional knowledge 416 

(Target 18). It also remains to be seen how well or poorly EO data reflect biodiversity in 417 

aquatic ecosystems (Targets 6 and 11), although environmental DNA on its own is a 418 

highly promising source of data on aquatic biodiversity. On the other hand, the efficient 419 

production of biodiversity maps and open access to analytical pipelines will help to 420 

disseminate the science base and technologies related to biodiversity (Target 19), and 421 

could contribute to public awareness of efforts to conserve biodiversity (Target 1) and 422 

improve the efficiency of national biodiversity planning (Target 17).  423 
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Conclusions  424 

It is extremely difficult to identify all the species present in a location (the Linnaean 425 

challenge), to delimit the geographic distributions of species (the Wallacean challenge), 426 

and to quantify their responses to natural and anthropogenic environmental change (the 427 

Hutchinsonian challenge)94. A synergy of Earth Observation, automated recording 428 

devices, high-throughput DNA sequencing, and modern statistical modelling can meet 429 

these challenges by making it possible to scale up from data-rich but finite sets of point 430 

samples to spatially continuous biodiversity maps, which are more informative than a few 431 

convenient indicator species but still let us generate summary statistics to communicate 432 

trends to decision-makers and the general public. The use of formal statistical 433 

frameworks lets us quantify error, identify gaps in our understanding, objectively rank the 434 

most likely pressures on biodiversity from multiple candidates, and increase the 435 

robustness of change detection. Adding information on species interactions and 436 

functions helps link biodiversity to ecosystem functions and services (Box 1, Figure 1) in 437 

a process-based approach56, rather than relying on crude estimates from land classes35. 438 

Finally, as DNA-based technologies mature, the same samples could track population-439 

genetic diversity64,95,96. 440 
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A global, multi-resolution monitoring network is thus within our reach but will still 441 

involve a number of challenges associated with technical capacity, computation and data 442 

storage, and data standardisation. For every ecologically distinct region, there will be an 443 

initial cost to collect data for model parameterisation, followed by a low level of 444 

continuous sampling, which will be necessary for updating models and for surveillance 445 

monitoring of environmental drivers that are invisible to EO, such as broad-spectrum 446 

insecticides. The initial costs are probably best borne by governments, as part of their 447 

commitment to the Convention on Biological Diversity, and there is great promise in 448 

using citizen-science networks to collect standardised, bulk biodiversity samples over 449 

large areas. A laudable example is the School Malaise Trap Program that recruited 450 

hundreds of secondary-school science classes to collect arthropods across Canada 451 

(malaiseprogram.com). Initial investment could also come from existing monitoring 452 

budgets with the expectation that additional information content will compensate for 453 

reduced sample numbers within existing programs82. The follow-up continuous sampling 454 

requires steady funding streams, and the standardisation of the CEOBE approach meets 455 

the needs of international certification schemes, such as REDD+, Climate, Community & 456 

Biodiversity Standards, Forest Stewardship Council, and the Roundtable on Sustainable 457 

Palm Oil, which all require the continuous monitoring of biodiversity and ecosystem 458 
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services. Biodiversity-offset payments to mitigate the impacts of development and 459 

carbon emissions are also expected to provide funding streams, and standardised 460 

assessments are needed to ensure that offsetting results in biodiversity net gain97.  461 

The CEOBE approach also depends on institutional support for the multidisciplinary 462 

collaborations needed to generate, combine, analyse, and act upon data from disparate 463 

disciplines (EO, ARDs, genomics, taxonomy and systematics, ecosystem functions and 464 

services, statistics, and decision science), expertise that no single individual has12,30,98. 465 

Identifying causal determinants of species distributions needs a clear understanding of 466 

phylogenetic structure and functional diversity, the ecological processes involved, and 467 

what EO sensors can and cannot observe99. Expert knowledge will also contribute to 468 

sampling design and covariate selection so that the full breadth of environmental 469 

conditions is captured, especially those not visible to EO.  470 

On the other hand, collaborations need not be global. Political and social interests will 471 

vary by region, and agencies should be encouraged to trial CEOBE within their 472 

jurisdictions where there are clear opportunities to improve management, while also 473 

enforcing the publication of primary data and analytical pipelines27,100. The 474 

Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) could play an 475 

important role as a global coordinating institution.  476 
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Resources for environmental management are always likely to be limited, but by doing 477 

more with our expensively gained field data, we can take action more efficiently and 478 

effectively. What is required now is leadership by governments and international 479 

organisations to stimulate integrated research and to endorse the use of comprehensive 480 

biodiversity information6. 481 
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Figure legends 798 

Figure 1. CEOBE – Connecting Earth Observation to Biodiversity and Ecosystems. Top 799 

row left: EO data and other geographical datasets are used to generate spatially 800 

continuous maps of biophysical data (S1, S2). Middle row left:  A real landscape with 801 

point-sample locations indicated by yellow dots. Bottom row left: Biodiversity is 802 

recorded manually using traditional methods, automated audio or image recording 803 

devices, or metabarcoding or metagenomic pipelines to generate a site X species table 804 

(Figure 2, S3). However, most of the landscape is not sampled (empty rows in the table). 805 

Right side: The point samples are combined statistically with continuous biophysical 806 

maps to predict biodiversity composition over the whole landscape (S4). In combination 807 

with ancillary data like trait databases, process-based models can then identify the 808 

functional composition of any location and map the expected distributions of ecosystem 809 

functions and services.  810 

Figure 2. Metabarcoding and metagenomic processing pipelines for high-throughput 811 

biodiversity surveys. Top row: Point locations across a landscape are sampled for 812 

biodiversity, and DNA is separately extracted from each sample. Three common sample 813 

types are (i) bulk samples of arthropods (depicted here), (ii) environmental DNA (eDNA) 814 
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from soil, water, and air, and (iii) invertebrate collectors of vertebrate DNA (iDNA), such 815 

as mosquitoes, leeches, flies, dung beetles, and ticks. Left column:  Metabarcoding – 816 

Each sample’s DNA is amplified via PCR (polymerase chain reaction) for a particular 817 

marker gene that is taxonomically informative, the samples are pooled and sequenced 818 

on a high-throughput sequencer, and then sorted back to sample by the sample-specific 819 

tags added during PCR. The sequences are then clustered into Operational Taxonomic 820 

Units (OTUs), which are species hypotheses, and assigned taxonomies by matching 821 

against online databases. Right column:  Meta/mitogenomics – Each sample’s total DNA 822 

is sequenced, and the output DNA reads are matched to reference genomes, which are 823 

often mitochondrial genomes. Bottom row:  The output of both processing pipelines is a 824 

‘sample X species’ table. Metabarcoding pipelines are useful for general biodiversity 825 

discovery and surveys because online barcode databases are more taxonomically 826 

complete, and even without taxonomic assignment, it is possible to calculate community 827 

metrics from OTUs only. Metagenomic pipelines are more costly, but advantageous when 828 

it is important to reliably identify particular sets of species and to a greater extent 829 

preserve relative biomass information. See S3 for further details. Clip-art courtesy of the 830 

Integration and Application Network, University of Maryland Center for Environmental 831 

Science (ian.umces.edu/symbols/). 832 
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Figure 3.  Three statistical pathways to map community composition and summary 833 

metrics from the combination of biodiversity point samples and continuous Earth 834 

Observation (EO) maps. Local diversity – α; species turnover – β; and regional diversity – 835 

γ. For clarity, the figure only considers models for species occurrence (OCC), not 836 

abundance. GAM:  Generalised Additive Model. DynamicFOAM is described in Ref. 76. 837 

See S4 for further details.  838 
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Fuzzy classification of grassland vegetation in an alkaline grassland in Püspökladány, Hungary, 
based on airborne LIDAR. Colours represent the weighted probability for a given vegetation 
class in each cell (0.5m2) (photo credit: András Zlinszky). 



 

Vegetation composition of a peatland using Partial Least Square Regression models on a 
hyperspectral image. The image is a false colour composite showing the predicted abundance 
of Graminoids (Red), Shrubs (Green), and Bryophytes (Blue) (photo credit: Beth Cole). 

 



 

 

A forest elephant “scanned” during a terrestrial laser-based measurement of a tropical 
rainforest in Gabon 2013 (photo credit: Kim Calders). 
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Supplementary Note 1. Earth Observation Technology 50 

Earth Observation (EO) sensors can be differentiated into active and passive types. Active 51 

sensors direct their own source of electromagnetic radiation at the Earth and receive the 52 

signal reflected back from the target (e.g. Synthetic Aperture Radar, SAR, transmits 53 

microwave pulses). Passive sensors rely on external radiation sources such as the Sun 54 

(optical and thermal sensors fall into this category). Different sensors record 55 



Bush et al. CEOBE 

      3 

electromagnetic radiation in specific ranges of the electromagnetic spectrum, with 56 

wavelengths from 400-700 nm (visible light) to 700-2400 nm (near to shortwave infrared), 57 

3000-14000 nm (thermally emitted radiation), and 1 cm-1 m (microwave radar wavelengths). 58 

Passive EO instruments record radiances at sensor, which generally have to be corrected 59 

for atmospheric aerosol and water vapour impacts in order to estimate the land surface 60 

reflectances from which EO-derived metrics are usually extracted. Active radar sensors 61 

record the transmitted energy that is scattered back from the surface, and since 62 

microwaves penetrate clouds, they provide an all-weather observing capability. However, 63 

longer wavelengths such as L-band (15-30 cm) and P-band (30-100 cm) can be affected by 64 

fluctuations in the total electron content of the ionosphere and the Faraday rotation. Optical 65 

and radar sensors are available from both airborne platforms (drones, aircraft) and 66 

spaceborne platforms (polar orbiting and geostationary satellites, international space 67 

station). Important characteristics of an EO sensor are its spectral coverage and spectral 68 

resolution (which bands of the electromagnetic spectrum it measures and at what 69 

wavelength detail), its spatial resolution (pixel size), and temporal repeat-frequency (number 70 

of days between two acquisitions at the same location). Many applications do not require 71 

frequent acquisitions, but multiple images can for instance help account for artefacts and 72 

error due to cloud cover1. 73 

Light Detection and Ranging (LiDAR) is an active remote-sensing technique that transmits 74 

infrared or visible polarised light and records the intensity and temporal delay of the 75 

received signal. Because of the constant speed of light in air, airborne LiDAR can measure 76 

the vertical height of objects with very high accuracy2. Radar interferometry from tandem 77 

satellite constellations can also measure vertical height but is not as accurate as LiDAR and 78 

has a coarser spatial resolution than airborne LiDAR3. LiDAR systems can be imaging 79 

LiDARs or profiling LiDARs, and some systems record the full waveform of the received 80 

radiation, allowing the study of vegetation canopies in great detail, while others only record 81 
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the first and last return of the waveform. LiDAR instruments are usually mounted on 82 

airborne platforms (aircraft, drones) or used as terrestrial instruments (mounted on a tripod 83 

or used as a handheld device), with the exception of the spaceborne ICESAT-GLAS 84 

profiling LiDAR and the planned GEDI mission to be mounted on the International Space 85 

Station. 86 

Supplementary Note 2. Biodiversity and ecosystem information in 87 

EO data 88 

The spatial and temporal coverage of EO cannot be matched by in-situ surveys, and 89 

mapping of habitat extent and land cover types has therefore been incorporated into 90 

national EO-monitoring programs for many years4,5. 91 

Aboveground biomass and carbon storage – Forest ecosystems play a crucial role in global 92 

biogeochemical cycles, and deforestation has been a major contributing factor to 93 

increasing anthropogenic carbon emissions. Global initiatives such as REDD+ (Reducing 94 

emissions from deforestation and forest degradation, and the role of conservation, 95 

sustainable management of forests and enhancement of forest carbon stocks in developing 96 

countries) has been negotiated by the UNFCCC for years and was reiterated in the Paris 97 

Agreement6. While the main aim is to mitigate climate change by reducing carbon 98 

emissions, for which developing countries receive results-based payments, safeguards and 99 

non-carbon benefits (NCBs) are recognised, including consistency with the conservation of 100 

natural forests and biodiversity7,8. The success of REDD+ therefore depends on our ability 101 

to accurately quantify the global distribution of carbon sources and sinks, for which EO 102 

such as SAR or LiDAR are now being developed9.  103 

Airborne LiDAR can quantify forest canopy height and complexity, and understorey density 104 

over large areas, and has been particularly useful in forestry10. Although individual trees can 105 
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be mapped by very high pulse densities11, forest structure is more commonly described by 106 

the heights of a lower density point-cloud aggregated over a forest plot. The average 107 

parameters for that forest can then be used to estimate aboveground biomass, which can 108 

be translated to ecosystem services like carbon sequestration and storage12. Hollaus et al.13 109 

demonstrated that even simple models could make accurate predictions of timber stock in 110 

alpine forests after being calibrated with inventory plot data (r2 > 0.80). The study also 111 

showed model accuracy was not sensitive to LiDAR point density or the season of 112 

acquisition.  113 

Although performance is likely to vary among habitat types, with accuracy usually greater in 114 

low diversity systems, and dependent on the number and size of calibration plots, a meta-115 

analysis of more than 70 studies by Zolkos et al.14 found airborne LiDAR to be more 116 

accurate than radar or passive optical data. Yet more accurate estimates of carbon stocks 117 

may be possible using hyperspectral to discriminate tree species15. LiDAR can also be used 118 

in ecosystems other than forests. For example, Zlinsky et al.16 demonstrated that LiDAR can 119 

replicate ground-based multi-parameter assessments of habitat conservation status in a 120 

Natura 2000 grassland reserve in Hungary (Overall Accuracy=0.8); and using EO, the entire 121 

reserve could be surveyed.  122 

Biodiversity – While the main focus of REDD+ is to reduce carbon emissions, there is also 123 

great potential to improve predictions of spatial patterns of biodiversity from vegetation 124 

structure. As argued elsewhere in this paper, these relationships could prove critical to 125 

achieving the ambitions of initiatives like REDD+ without compromising the benefits for 126 

biodiversity conservation17. 127 

For instance, early EO products like NDVI (normalised difference vegetation index) have 128 

been shown to approximate changes in vegetation structure and hence turnover of the 129 

invertebrate ground fauna18,19, and more recently high spatial resolution airborne imagery 130 
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has been shown to identify canopy gaps that are associated with the diversity of 131 

understorey vegetation20. Spectral traits of plants are determined by their physiological and 132 

morphological traits, and there are demonstrated applications using EO to reveal the 133 

distribution of vegetation types21,22, functional types23, richness24, and temporal changes25 to 134 

name but a few26. Nonetheless, the success of habitat mapping varies with habitat type, 135 

and research into the right combination of sensors and algorithms is ongoing27-29. Finally, 136 

the combination of hyperspectral sensors and LiDAR provides an extremely detailed picture 137 

of the Earth’s surface, potentially capable of identifying the composition of individual trees 138 

in some landscapes30 and reproducing patterns of tree richness and turnover in highly 139 

diverse rainforests at landscape scales22,31,32. Eventually, similar measurements that directly 140 

observe or predict the distribution of biodiversity could be extended globally as satellite-141 

based LiDAR and hyperspectral imaging systems become operational (S1). 142 

LiDAR-derived structural metrics have also proven useful as predictors in many animal 143 

groups33,34, and LiDAR could be more cost-effective than traditional methods for censusing 144 

invertebrate communities35 and is likely to perform even better once taxonomic 145 

uncertainties are reduced with DNA-based identification36. 146 

Supplementary Note 3. Biodiversity technology 147 

Automated Recording Devices (ARDs) 148 

The first set of technologies encompass ARDs, such as camera traps and bioacoustic 149 

recorders that can be left in even remote field locations for weeks to months, capturing 150 

records of birds, amphibians, and mammals, and thus allowing continuous sampling of tens 151 

of thousands of hectares at a time, with occasional fieldwork to maintain sensors and 152 

retrieve data. 153 
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Camera traps. - Camera traps are powerful tools for detecting medium to larger-sized 154 

mammal species, particularly in forests37, and they have also been used to study ground-155 

dwelling bird species38,39 and lizards40. Camera traps readily detect rare and cryptic or 156 

nocturnal species, and once set up, operate independently of an observer until battery life 157 

or memory capacity is exhausted. Early models used film roll cameras and active sensors, 158 

where an infrared beam was established across a potential animal path, and the unit was 159 

triggered when that beam was broken. Set-up of the infrared beam (height, positioning) had 160 

to be tailored specifically to the target species, and early studies often focused on the 161 

demography of single charismatic species such as tigers41,42. Even with passive heat-in-162 

motion sensors, which made for a more flexible set-up because of the increased area over 163 

which animals can be detected, the low number of exposures on film rolls was a severely 164 

limiting factor to the time that camera traps could be left in the field without revisiting. 165 

The development of a wide range of digital models in the last 10 years has greatly 166 

expanded the applications of camera traps. With increasingly capacious memory cards and 167 

batteries, cameras can now routinely be left unattended for weeks up to several months 168 

(depending on the expected amount of animal traffic). Options for infrared flash make the 169 

equipment nearly invisible, even at night, reducing theft. Modern camera traps capture 170 

images of sufficient quality to allow identification to species in 80-90% of photos. Rapid 171 

sequential triggers of video options further increase the likelihood of obtaining the footage 172 

needed to identify species and individuals. Whereas the up-front investment in the 173 

equipment can be high (depending on manufacturer and specifications, a single trap can 174 

cost anywhere between $80 and $800), camera traps have repeatedly been shown to beat 175 

other methods (e.g. transects, track plates) in their efficiency to document medium to large 176 

terrestrial mammal species43-45, and they become more cost effective for longer surveys44. 177 

Although the method is still used to study the demography of individual species, particularly 178 

those with natural coat patterns allowing individual identification46-48, camera traps are now 179 
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also used in behavioural studies49 and to study species interactions in space and time50,51. 180 

Moreover, camera traps are increasingly used to survey terrestrial52-54 and even arboreal 181 

mammal communities55-57. Camera traps have been proposed as a tool in systematic 182 

biodiversity assessments in the context of biodiversity co-benefits of forest management 183 

certification and REDD+ payments58. As an example application, a recent study on 184 

mammalian communities in Bornean forest reserves revealed that particularly threatened 185 

species benefit from sustainable forest management practices, applied in the context of 186 

certification by the Forest Stewardship Council (FSC)54. Similarly, such standardised 187 

camera-trapping surveys, if repeated over time, can be used to monitor population and 188 

biodiversity trends, which would be impossible using traditional, observer-based fieldwork 189 

techniques. 190 

How readily camera traps detect certain species is a function of many factors, including the 191 

species’ behaviour and abundance, and the specific location and setup of the camera 192 

traps59,60. For example, arboreal species are harder to detect with ground-based cameras 193 

than terrestrial species, and if cameras are set up preferably along roads and trails, species 194 

that use these trails will be detected sooner and more frequently than species that prefer to 195 

move through vegetation. Comparing biodiversity inventory data across sites and/or years 196 

therefore requires a standardised study design, and application of analytical methods that 197 

account for these differences in detectability (see Occupancy Modelling, below). 198 

Bioacoustic sensors. - Species that produce acoustic signals can further be surveyed with 199 

standalone bioacoustic sensors61. Taxonomic groups most frequently studied with 200 

bioacoustic methods include birds62,63, bats64,65, anurans63, certain insects66,67, and 201 

cetaceans68. Bioacoustic recordings have also been used to study fish69, and non-flying 202 

mammals such as forest elephants70 and primates71,72. Using calls to detect and identify 203 

species has a long standing history in bird studies73. Handheld sound recorders are a useful 204 

tool in such surveys to create permanent records of species audio-detections and to allow 205 
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for later identification (or verification) of records by specialists. There also exist standalone 206 

bioacoustic sensors74 that, similar to camera traps, can be set up in the field to collect 207 

audio information without an observer’s presence. Also similar to camera traps, they are 208 

primarily limited by battery and storage capacity, and storage capacity has increased 209 

dramatically with the switch from analogue to digital equipment63. Automatic digital 210 

recording systems can be programed to record continuously or at certain times, or, 211 

alternatively, more advanced equipment can be triggered by calls above a certain 212 

amplitude or of a certain frequency spectrum75,76. 213 

Once recorded, calls/songs can be identified directly by a trained human observer (but of 214 

course only if the species produces a sound that is audible to humans) and/or by 215 

visualisation. The latter depicts species-specific acoustic parameters such as the temporal 216 

structure and frequency composition of a call/song. Most frequently, visualisation takes the 217 

form of a spectrogram, which shows the evolution of the frequency structure of a call over 218 

time, using color-coding for changes in amplitude75. Such visualisation can reveal call 219 

characteristics that the human ear might not perceive. Call-matching to species based on 220 

these characteristics can be performed manually, or using computer algorithms. Obrist et 221 

al.75 report that most automated identification software packages achieve a 90% 222 

recognition rate but can rarely be expected to cover all species present in a sample. 223 

Conversely, Russo and Voigt65 have voiced concern over the accuracy of automated 224 

species identification of bat calls. 225 

Criticism notwithstanding, advances in the development of audio-recorders and call-226 

matching software make automated devices a promising tool for biodiversity inventory and 227 

monitoring58. Such surveys, however, require extensive preliminary studies to compile 228 

reference call data bases. Similar to genetic reference libraries, there are now multiple 229 

available sound libraries (e.g. http://www.ibac.info/links.html#libs, accessed 8 Dec 2016), 230 

but especially for species-rich tropical communities, bioacoustic databases are currently 231 
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limited77. Circumventing the need for species identification, some studies have suggested 232 

the use of bioacoustic diversity as a measure in and of itself. Rather than identifying 233 

individual calls and species, this approach is based on measuring the acoustic entropy (i.e. 234 

temporal and frequency heterogeneity) of entire soundscapes, and, on the assumption that 235 

there is competition for sound niches in time and frequency, a more complex soundscape 236 

is taken as an index for a more diverse community78. Such bioacoustics diversity indices 237 

have been shown to correlate with taxonomic and functional diversity in birds79 and are a 238 

promising field of study, albeit in need of further development and testing80. 239 

As with other survey methods, detectability and identifiability of individuals and species can 240 

be influenced by their vocalisation and other behaviour, habitat, weather, time of day, or the 241 

sensitivity of the recording equipment. For example, wind and concurrent vocalisation by 242 

other species were found to have a negative impact on the ability to identify frog calls81, and 243 

different equipment has been shown to result in different numbers of bird species 244 

detected82. In addition to false negatives (i.e. failing to record a species even though it is 245 

present), misidentification of calls can result in false positives83. As such, standardised 246 

surveys and appropriate analytical methods are required to ensure comparability of results 247 

across space and time. Occupancy models, for example (discussed below) were developed 248 

to account for false negatives and can be adjusted to account for false positives as well84,85. 249 

They have been successfully used in combination with automated acoustic monitoring86. 250 

DNA-based methods 251 

Almost all DNA-based techniques exploit the stylised fact that some DNA regions exhibit 252 

higher levels of sequence difference between species and low levels of difference within 253 

species, which can be used to tell species apart. For animals, the best known of these so-254 

called ‘DNA barcodes’ is a 658-nucleotide portion of the mitochondrial cytochrome oxidase 255 

subunit I gene, or COI, which taxonomists have used to build an online reference database 256 
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that links sequences to species (boldsystems.org, accessed 11 Oct 2016)87. Other 257 

mitochondrial markers can also be used for taxonomic assignment, and these are available 258 

in online databases such as GenBank (blast.ncbi.nlm.nih.gov, accessed 11 Oct 2016). An 259 

organism can thus be assigned a taxonomic identification by extracting its DNA, amplifying 260 

it with a primer set for the chosen marker(s), sequencing these, and comparing them to a 261 

DNA reference database. Even if a species is not represented in a database, its congeners 262 

or confamilials usually are, allowing at least higher-level taxonomic identification. 263 

When going from DNA barcoding of single specimens, as described above, to using DNA in 264 

synoptic biodiversity surveys, the major challenge is the need to assign taxonomic names 265 

to mixed samples containing DNA from multiple taxa, such as occurs in soil, water, faeces, 266 

and bulk insect samples. The rise of high-throughput sequencing platforms now makes this 267 

routine, and three major approaches are now being used: metabarcoding, high-throughput 268 

individual barcoding, and meta/mitogenomics.  269 

Metabarcoding. – DNA is extracted from bulk or environmental samples containing DNA 270 

from a mix of different taxa, and a taxonomically informative marker like COI is PCR 271 

amplified using a universal primer set targeting the taxonomic group of interest (Fig. 2 Main 272 

Text). In this way, only DNA markers of interest are sequenced, making this a cost-effective 273 

approach. The resulting sequences are then clustered into self-similar sets of sequences, 274 

each known as an Operational Taxonomic Unit (OTU), which is a species hypothesis. A 275 

representative sequence is taken from each OTU and assigned a taxonomy using an online 276 

database. The main output of metabarcoding is the classic ecological table of sample X 277 

species (OTU), but now achievable for at least hundreds of species across hundreds of 278 

samples, plus, to a lesser extent, their phylogenetic relationships. Metabarcoding data thus 279 

carry information on species co-occurrence at an unprecedented scale for joint-species-280 

distribution modelling. 281 
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Metabarcoding relieves the taxonomic bottleneck, and it also helps relieve the sampling 282 

bottleneck. Firstly, metabarcoding can be applied to taxa such as meiofauna and dipterans 283 

that are easy to collect and ecologically informative but are so difficult to identify 284 

morphologically that they have been ignored in conventional surveys. Secondly, 285 

metabarcoding allows difficult-to-find species, such as fungi, fish, and terrestrial 286 

vertebrates, to be detected directly from microscopic bits of tissue that can be filtered out 287 

of soil, water, air, and parasites, known as ‘environmental DNA’ or eDNA88,89. For instance, 288 

leeches, flies, mosquitoes, dung beetles, and ticks retain trace amounts of DNA from their 289 

previous meals on animal hosts or faeces, so mass invertebrate trapping could be used to 290 

survey other wildlife90. 291 

However, metabarcoding unavoidably introduces error, including inter alia taxonomic 292 

uncertainty due to e.g. PCR and sequencing error and incomplete reference databases, 293 

sample cross-contamination, and loss of species, biomass, and abundance information. 294 

Judicious sampling and primer design, lab practice, and bioinformatic and statistical 295 

pipelines are able to correct or compensate for these errors, and studies have shown that 296 

metabarcoding datasets reflect on-the-ground reality sufficiently closely to allow correct 297 

management decisions91-96. It is worth noting that errors are explicit and quantifiable in 298 

DNA-based pipelines, whereas conventional surveys contain important error sources, such 299 

as visual misidentifications97, that are essentially impossible to quantify or correct 300 

retrospectively. 301 

High-throughput individual barcoding – In this method98, large numbers of organisms, 302 

typically insects, are individually extracted, amplified, and tagged during amplification. 303 

Hundreds of individual amplicons are then pooled and sequenced, producing a separate 304 

barcode for each organism. Throughput is lower and workload is higher than in 305 

metabarcoding, but abundance information is preserved, and individual organisms can be 306 

revisited for further taxonomic study. 307 
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Meta/mitogenomics – Like metabarcoding, metagenomics can be used on bulk or 308 

environmental samples, but instead of targeting a specific gene, all DNA is sequenced, and 309 

the output datasets are interrogated in silico for taxonomically and functionally informative 310 

gene sequences (Fig. 2 Main Text). Compared to metabarcoding, the advantage of this 311 

genomic approach is that it does not require a PCR amplification step to enrich target taxa, 312 

which should reduce bias. If samples are sequenced deeply enough, even low-biomass 313 

species can be detected in the mix (although sequencer library construction still imposes 314 

some biases). Metagenomics also preserves more information on species relative 315 

biomasses (a proxy for ecosystem-function importance), can reduce the risk of sample 316 

contamination, and depending on the number of samples, can reduce workload. Lastly, it 317 

increases the certainty of taxonomic assignment for species that are present in reference 318 

database. Currently, metagenomics is routinely applied to microbial communities but is not 319 

yet applied to Eukaryotes, due to their much larger genomes and thus higher costs. 320 

However, bioinformatic approaches that allow rapid pairwise comparisons of genomic 321 

datasets99 and continued decreases in sequencing costs will make this approach feasible 322 

for Eukaryotes. That said, because orders-of-magnitude fewer species have been genome-323 

sequenced, relative to barcode databases, metagenomics applied to Eukaryotes is best 324 

suited for studies that focus on hundreds of target species or fewer, for which it is possible 325 

to build custom reference databases. 326 

In mitogenomics, the focus is on mitochondrial genomes, which can be individually 327 

assembled out of low-coverage sequencing of bulk samples (‘genome skims’), even though 328 

mitochondrial reads typically make up <1% of a sequencer’s output100. This greatly reduces 329 

the cost of building reference databases. Mitogenomics has been used to reconstruct the 330 

phylogenetic community structure of soil-dwelling beetle communities101 and to reliably 331 

assign bee species to samples, even after the samples had been DNA-cross-contaminated 332 

by handling102. 333 
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Single-species detection – Finally, in situations where it is imperative to detect particular 334 

species of concern (e.g. early detection of invasive species or monitoring threatened 335 

species) with high probability, older molecular techniques can be used and/or added to the 336 

above methods. Species-specific primers can be used in addition to generic primers during 337 

metabarcoding to increase detection probability103, or species-specific quantitative PCR 338 

(qPCR) can be conducted on eDNA samples. Although low throughput, this application of 339 

targeted qPCR reduces false negatives, provided that proper lab procedure, including 340 

negatives controls, is followed104. Improved detection rates lead to improvements in model 341 

performance, thus increasing the reliability of the predicted distributions of these species of 342 

concern, and greater cost efficiency105. Single-species detections using qPCR have been 343 

combined with MODIS satellite observations to build maximum-entropy species distribution 344 

models that predicted the distribution of an invasive diatom (Didymosphenia geminata) 345 

across the Rocky Mountains (Fig S3.1106). Models based on occurrence data from both 346 

eDNA and traditional methods correctly predicted occurrence of D. geminata at external 347 

validation sites with a 93 – 100% correct classification rate (area under the receiver 348 

operating characteristic curve, a combined measure of sensitivity and specificity, ranged 349 

from 0.94 to 1.00). Temporally concurrent environmental predictors, including 350 

evapotranspiration or land surface temperature data from MODIS, allow these models to 351 

account for spatial and temporal variation and produce robust predictions (Fig S3.1a). This 352 

provides natural resource managers spatially explicit and extensive predictions on where 353 

this invasive species is likely to occur. The same approach is also being applied to mapping 354 

distributions of six native fish on the north-slope of Alaska to aid in their conservation106. 355 
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 356 

Supplementary Note 4. Statistical modelling 357 

Occupancy Detection Models – Logistical constraints dictate that a site-by-species matrix 358 

can only ever comprise a finite set of point samples, leaving most of the environment 359 

unsampled. Moreover, even within sampled sites, an unavoidable problem is false 360 

negatives:  species that are indeed present but not detected107,108, and in some cases false 361 

positives (species detected that are in fact absent). To correct for imperfect detection, 362 

occupancy-detection models are used to disentangle the factors that determine the 363 

occurrence of a species from those that affect the probability of detection, given 364 

occurrence109. To estimate the probability of detection, a location is repeatedly sampled, 365 

either by spatially sub-sampling a site, or by re-visiting the same location multiple times 366 
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within a short time period. A hierarchical generalised linear mixed model (GLMM) – 367 

technically a zero-inflated logistic regression of species detection/non-detection data – is 368 

then used to predict the probability that a species occurs at a site, based on the site’s 369 

environmental covariates and the empirically estimated probability of detection, which can 370 

also itself be a function of site- and time-specific covariates. 371 

Community Occupancy Detection Models – In the simplest application of occupancy 372 

detection, each species is considered independent, so a multi-species model simply 373 

combines the species’ environmental responses and their different detectabilities, and 374 

calculates metrics of diversity either from occupancy probabilities (in a likelihood 375 

framework, richness is the sum of all occupancy probabilities at a site), or from realised 376 

occupancy states (in a Bayesian framework, richness is the number of species estimated to 377 

occur at that site)110,111. However, if the environmental responses of multiple species follow 378 

a common distribution, community occupancy detection models allow individual 379 

coefficients to be modelled as a random effect, whereby the data-poor species borrow 380 

information from data-rich species112,113, which allows information on species traits to be 381 

included as predictors114. Furthermore, based on differences in species detection 382 

probabilities, occupancy models can also estimate the number of species that were never 383 

detected, by introducing zero-inflation within the inputs (“data augmentation”115,116), recently 384 

extended for multi-region comparison117. More complex models can include the effect of 385 

community dynamics on spatial and temporal variation in occurrence118. 386 

Joint Species Distribution Models / Latent Variable Models – An extension of the single-387 

species approach is to consider all pairwise co-occurrences among species119. These so-388 

called joint species distribution models (JSDMs) predict multi-species responses by not 389 

only modelling species-specific responses to environmental covariates as random effects 390 

but also accounting for residual patterns of co-occurrence not explained by environmental 391 

factors120. In the past, the number of taxa that J-SDMs could consider was limited because 392 
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the number of parameters in unstructured variance-covariance matrices rises rapidly121. 393 

However, JSDMs can now analyse high numbers of species by inducing correlation among 394 

taxa using ‘latent’ unobserved factors120. Residual correlation might indicate species 395 

interactions, like competition or predation, unmeasured predictors, spatial autocorrelation, 396 

or misspecification of the model, all of which warrant further investigation122. Spatially 397 

explicit latent variables allow one to predict a species community for a focal site using as 398 

predictors not only the environmental variables measured at the focal site, but also the 399 

occurrences and co-occurrences of the species in nearby sites123, thus providing a 400 

statistically efficient tool for producing interpolated species distribution maps from sparse 401 

data on species rich communities. In principle, detection probability itself could also be 402 

included as a layer describing the observation process124-126. LVMs are currently an area of 403 

active research, and there has been rapid progress to expand computational limits and 404 

integrate with the breadth of previous development using hierarchical mixed models120. Of 405 

particular interest is the opportunity to cluster species responses to environmental 406 

covariates according to species traits (i.e. “the fourth-corner problem”127) making it easier to 407 

translate compositional turnover to functional shifts128. 408 

Generalised Dissimilarity Models – Finally, in very diverse communities with hundreds or 409 

thousands of taxa (e.g. soil fauna), it might not be meaningful to model the responses of 410 

individual species. Instead, generalised dissimilarity models (GDM) use a pairwise matrix of 411 

compositional dissimilarity to predict the nonlinear response of compositional turnover to 412 

environmental changes; weighting and transforming environmental variables so that 413 

conversion of multidimensional environmental space best describes the scaled turnover of 414 

biological composition129. GDM can help identify new sampling sites for more reliable 415 

prediction130, and uncertainty in variable selection can be further evaluated using Bayesian 416 

bootstrapping131. The dissimilarity matrix can also be derived from other biological distance 417 

metrics like sequence reads, allelic turnover, functional differences, or phylogenetic 418 
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diversity99,132,133. The link between turnover of composition or function can then be tested 419 

using scaled environmental variables as predictors of spatial or temporal changes in service 420 

provision134.  421 

GDM has already been incorporated into EO-based applications to estimate ecological 422 

values at landscape scales135,136, and model performance improves when combined with 423 

multispectral EO sensors137. By predicting the dissimilarity of sites alongside an expected 424 

species-area relationship, GDM can also be used to estimate the proportion of biodiversity 425 

retained regionally (Box 3 in main text). This has numerous conservation applications (e.g. 426 

protected areas effectiveness – Aichi Target 11138), as well as quantifying the biodiversity 427 

left regionally (gamma diversity) to support ecosystem services139. If the identity of species 428 

composition is still desired, GDM can be combined with a model of alpha diversity to 429 

estimate the probable species composition of every cell in a landscape140. Furthermore, 430 

ecological processes like dispersal, growth rates, and metacommunity dynamics have been 431 

incorporated to predict ecosystem function and to rank management actions134,141. 432 

Sampling design. – For a given sampling effort, careful survey design can improve the 433 

accuracy and reliability of biodiversity models. For example, although we may be interested 434 

in the different species assemblages that each contribute to carbon storage in forests (e.g. 435 

large frugivorous mammals, isopods, and saprotrophic fungi; Box 2 in main text), we would 436 

not sample for these disparate taxa at the same spatial grain142. For example, within the 437 

home range of a single monkey troupe, the composition of saprotrophic fungi might exhibit 438 

high levels of turnover across wood from different tree species. Fungi thus need to be 439 

sampled at a finer spatial grain than do mammals, and soil fauna might need to be sampled 440 

even more finely again. The grain of sampling should therefore try to match the grain at 441 

which environmental heterogeneity creates different habitats, but for efficiency, should also 442 

aggregate across points whose composition only varies due to stochastic fluctuations. 443 

Once the scale of analysis has been chosen, the sampling strategy can be adjusted to 444 
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ensure that biological samples represent an equivalent area effectively. For example, how 445 

many soil cores need to be sequenced to estimate the diversity of fungi within a forest plot? 446 

Scaling relationships like species-area curves can be a useful shortcut to compare 447 

community-level characteristics (alpha or beta diversity), but they cannot identify which 448 

species were missed. Instead, the differences in sampling effort, including the area sampled 449 

(e.g. number of quadrats), could be accounted for explicitly by species’ detectability in 450 

community occupancy models109. Finally, it is important that samples capture the full range 451 

and variability of environments across the region of study, especially where environmental 452 

differences lead to higher turnover130. This is particularly true of finite resources that 453 

become limiting, such as soil moisture gradients that determine vegetation succession in 454 

arid biomes, but are less important to predicting turnover in the wet tropics. These 455 

decisions can be guided by expert opinion and existing survey data, but pilot studies may 456 

be required at multiple spatial and temporal resolutions, before settling on a single strategy. 457 

In addition to the pathways that we have described above and in the Main Text (Figure 3), 458 

there of course exist other methods to model communities, which take into explicit account 459 

biological mechanisms such as demography, dispersal, evolution, and specialist 460 

interactions143,144. We have not covered these methods because they require much more 461 

input data145 and thus are limited in their applicability, although when available, all 462 

information should of course be exploited. We reiterate that species co-occurrence 463 

matrices, latent variables, phylogenetic structure, and ecological functions can all be 464 

extracted from the three statistical pathways in Figure 3, and these provide an efficient way 465 

to generate causal hypotheses for further, targeted investigation.  466 
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