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Abstract

Conservation and monitoring of tropical forests requires accurate information on their extent and change dynamics.
Cloud cover, sensor errors and technical barriers associated with satellite remote sensing data continue to prevent
many national and sub-national REDD+ initiatives from developing their reference deforestation and forest degradation
emission levels. Here we present a framework for large-scale historical forest cover change analysis using free
multispectral satellite imagery in an extremely cloudy tropical forest region. The CLASlite approach provided highly
automated mapping of tropical forest cover, deforestation and degradation from Landsat satellite imagery. Critically,
the fractional cover of forest photosynthetic vegetation, non-photosynthetic vegetation, and bare substrates calculated
by CLASlite provided scene-invariant quantities for forest cover, allowing for systematic mosaicking of incomplete
satellite data coverage. A synthesized satellite-based data set of forest cover was thereby created, reducing image
incompleteness caused by clouds, shadows or sensor errors. This approach can readily be implemented by single
operators with highly constrained budgets. We test this framework on tropical forests of the Colombian Pacific
Coast (Chocó) – one of the cloudiest regions on Earth, with successful comparison to the Colombian government’s
deforestation map and a global deforestation map.
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Background
Reducing emissions from deforestation and forest degrad-
ation, and enhancing the carbon stocks (REDD+), remains
a key strategy for mitigating climate change. Unlike many
previous conservation efforts, REDD+ is constructed on
the principles of additionality against a baseline or refer-
ence emission level (REL), with no displacement of emis-
sions to neighboring areas (leakage). It is noted here that
the United Nations Framework Convention on Climate
Change (UNFCCC) and the World Bank’s Forest Carbon
Partnership Facility (FCPF) use the term REL, while the
Verified Carbon Standard (VCS) applies the term baseline.
They are synonymous, as long as they are reported as
greenhouse gas emissions in units of tons equivalent to
CO2 (tCO2e). REDD+ intends to follow a hierarchical
nested approach where project, subnational, and national
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initiatives contribute to the reduction in emission from
deforestation and degradation. A consistent system that
works across scales is therefore important for operational-
izing REDD+, ensuring no displacement in the emission,
and also to avoid potential double counting issues. The
UNFCCC in its Warsaw Framework for REDD+ [1] speci-
fies that such national forest monitoring systems “should
provide data and information that are transparent, consist-
ent over time, and are suitable for measuring, reporting
and verifying anthropogenic forest-related emissions by
sources and removals by sinks, forest carbon stocks, and
forest carbon stock and forest area change”.
The role of remote sensing in measuring and monitoring

forest area, and assessing its structural and functional attri-
butes, has been well documented [2-4]. However, the
REDD+ projects are often located in the humid tropics
where a number of prevalent atmospheric and ground con-
ditions, such as cloud cover, haze and uneven topography,
often disrupt a satellite sensor’s ability to provide high
quality observations of the land surface [5]. Moreover,
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Figure 1 Location of the study region in Colombia.
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spatial infrastructure, data access and technological expert-
ise are key determinants of remote sensing capacity in
countries within the tropics. This data limitation problem
has been heavily reported and continues to be discussed
[4-10]. Although operational monitoring of deforestation is
reasonably possible with medium resolution remote sens-
ing data such as Landsat, as evidenced from the Brazilian
government’s program [11], establishing such a scheme at
global scale is still underway. Progress has been made by
the Global Forest Change program [12], and recent initia-
tives such as mapping of annual deforestation rate using
Landsat data in the Congo basin [13], Sumatra [14],
Colombia [15] and Peru [16] are also notable in this con-
text. More importantly, such a system must make use of
the satellite image pixel-based time series data compositing
to minimize cloud, haze and other atmospheric artefacts
that severely limit Landsat and other medium-resolution
optical satellite data.
Here we report on the performance of a forest cover

and deforestation mapping tool developed by Asner et al
[17] for the operational monitoring of REDD+ landscapes
in order to advance the readiness activities in carbon
accounting frameworks. CLASlite is intended for a non-
expert user to quickly assess the regional distribution of
forest cover, deforestation and degradation. This makes
it particularly appropriate for the establishment of sub-
national to national reference levels in tropical regions
with reduced satellite image quality and technical resources.
CLASlite is intended to help the REDD+ community
achieve rapid and reliable estimates of forest cover and
deforestation. Here we test the efficacy of CLASlite in
the context of new developments with sub-national and
jurisdictional REDD+ initiatives. We also report on the
performance of some new CLASlite modules such as
the reduced masking option and deforestation artifact
remover, and we elaborate on their effects on REDD+
reference levels and give recommendations for good
practice. Furthermore we compare our mapping results
with those of the Colombian national Institute of Hydrol-
ogy, Metrology and Environmental Studies (IDEAM) [15]
and of the new global maps recently made available by
Hansen et al. [12].

Study area
The study region includes the Colombian municipality
of Ancandi and the northern portion of Unguía, in the
Department of Chocó. The southern border is formed
by the common area coverage of Landsat image scene
path-row 10 / 54 (Figure 1), with an area of about 1,900
km2. The approach presented here can be scaled up to
regions of varying number of scenes and sub-national
dimensions.
Several municipalities form the northernmost portion

of land of the Department of Chocó. They are bordered
to the west by Panama’s Darién province and to the east
by the Urabá Gulf of the Caribbean Sea, where the Rio
Atrato forms a distinct delta known as “Bocas del
Atrato” within the municipality of Turbo in neighboring
department of Antioquia. Apart from logging, small-
scale agriculture, fishery and cattle ranching, land-use in
the study area includes illicit crops (Erythroxylum spp.)
and activities around trafficking and contraband. Forests
in the study region are exclusively humid Neotropical
evergreen broadleaf in lowland, sub-montane, and pre-
montane elevation ranges (1-1,400 m a.s.l.). Its peninsu-
lar geography at the Isthmus of Panama between the
Caribbean Sea and the Pacific Ocean results in consistently
heavy cloud cover. IDEAM estimates mean precipitation of
2,500-3,000 mm yr−1 in the region [18]. However, the
Chocó harbors areas with > 9,000 mm of rainfall annually
and is well known to be one of the rainiest regions on
Earth. Studies suggest that the southern Department of
Cauca (San Miguel de Micay) potentially has the high-
est recorded rainfall on Earth with an annual mean of
12,892 mm from 1971-2000 [18]. As a result, the Pacific
coast of Colombia presents an extremely challenging case
for optical remote sensing of forest cover and change. This
challenge makes it an excellent laboratory to test new
remote sensing approaches, and comparisons between
monitoring systems can give us important information on
the effects of monitoring design on mapped deforestation
and therefore REDD+ reference emission levels [19].



Figure 2 Deforestation mapped by the most conservative option of 100% CLASlite v3.0 Artifact Remover. Over a 25-year period, the
region lost 30% of its original 1986 forest cover at a gross deforestation rate 1.210% yr−1.
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Results and discussion
Observed deforestation from mosaicked fractional covers
The multi-temporal analysis covering 25 years (1986 –
2011) detected 30,681.3 ha of forest cover loss, which
represents 26.31% of 1986 cover, or a deforestation rate
of 1291 ha yr−1 (Figure 2). Such a long-term average rate
is already applicable for a REDD+ REL, and can be
extrapolated to the forest cover remaining at project
start date [20-24] (Table 1).
Rates of forest loss represent a convenient way of

reporting deforestation in a globally comparable way
[12]. However, there is little agreement among land-use
change modelers as to whether projected deforestation
rates should be predicted from average observed rates of
forest cover loss or average observed rates of forest area
lost. Using any rate of loss for prediction introduces
problems, as the rate of loss not only depends equally
on accurate mapping of the current area or cover, but
also of accurate mapping of the original forest area or
cover. In addition, rate of loss introduces a semantic
problem: Researchers may quantify deforestation over
large spatial and temporal extents, however, the process
actually forms in local decision makers’ minds in terms
of absolute areas, with no concept of the regional or na-
tional rate of forest loss. Simply speaking, farmers know
how much land they need to clear for the expansion of a
given activity, but they usually have little concept of how
this area scales relative to the regional rate of loss. This
may lead them to believe, if they have cleared 10,000 ha
every year over the last 10 years, this quantity is the
same as that converted regionally in the business as
usual scenario. The land-holders do not know if those
10,000 ha cleared represent 1%, 0.1% or 0.01% of annual
loss. REDD+ RELs predict emissions from forest carbon
loss based on emission factors per activity type in
Greenhouse Gas (GHG) emissions in tons equivalent to
CO2 per ha (tCO2e ha−1). Therefore estimating emissions
through predicted values of absolute forest area loss also
in hectares per year is more straightforward and transpar-
ent than using a rate of loss in percent re-applied to
remaining forest area. This is particularly true if the pre-
dicted future quantity of loss is not a stable average, but a
function of the historic trend in quantities of loss [25].

Deforestation artifact remover test
CLASlite 3.0 offers the user an option to apply a Defor-
estation Artifact Remover (DFAR) ranging in value from
0-100%. Unaltered forest change outputs may include
unwanted artifacts (false positives) caused by the influ-
ence of clouds, unmasked cloud edges, cloud shadows,
topography, and water boundaries. For Landsat imagery,
the user can define desired settings for artifact removal



Table 1 Observed forest cover loss in study area by CLASlite v3.0 mosaic approach

Time A1 Time A2 Forest cover A1 [ha] Forest cover A2 [ha] Defperiod [ha] Deforestation rate yr−1 [%]

1986.049 1991.219 116,623.17 108,208.53 8,414.64 −1.45

1991.219 1996.520 113,263.83 109,904.49 3,359.34 −0.57

1996.520 1999.542 108,906.39 104,548.95 4,357.44 −1.35

1999.542 2002.498 106,949.25 104,992.11 1,957.14 −0.62

2002.498 2011.194 104,992.11 92,399.40 12,592.71 −1.47

1986.049 2011.194 116,623.17 85,941.90 30,681.27 −1.21
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in the deforestation image. In the standard operating
mode, most artifacts are eliminated prior to analysis by
the CLASlite pixel exclusion algorithm. With the user-
selected DFAR value of 100%, CLASlite eliminates all
pixels it recognizes as potential false positives. In con-
trast, at 0%, CLASlite does not eliminate any of these
potential false positives. In order to assess the impact of
this tool the time-series of mosaicked fraction cover
images was run with the parameter set at DFAR values
equal to 0%, 50%, and 100%. The accumulated deforested
area over the monitoring period with a DFAR value of 0%
was 137.6% of the area under 100% (Figure 3).
As a general rule, all measurements, assumptions and

models used in carbon projects like REDD+ should be
“emission reduction conservative” [26]. This means, if a
choice of methods and parameters is to be made between
equally justifiable approaches, the preferred option should
result in more conservative estimates of GHG emission
reductions attributed to a climate change mitigation ac-
tion in the end. Historical forest cover change monitoring
is an essential element of the reference emission level of
REDD+. Net GHG emission reductions creditable to a cli-
mate change mitigation intervention are calculated as a
difference between REL and observed emissions from
Figure 3 Fractional cover images of the central scene in 2002 (left), a
especially in the south-east of the study area.
forest cover change (Measure, Report, Verify – MRV) in
years of project operation [1,20-24,26]. This means that
options should be selected to report conservative histor-
ical forest cover change to avoid risks of inflating the base-
line emissions by measurement decisions.
Therefore, for a final report of historical deforestation,

we choose the most conservative DFAR 100%. We also
recommend this as the default for CLASlite 3.0 monitor-
ing efforts with the aim to generate data for a REDD+
REL. Deviation by users from this conservative approach
should be justified. This study does not analyze the for-
est degradation output of CLASlite 3.0. Should CLASlite
3.0 also be applied to generate data for REDD+ REL
credit, it seems prudent to apply the same conservative
option of 100% to the “Degradation Artifact Remover”.

Mosaicked vs. single scene time-steps
Our study also included a comparison of deforestation
monitoring using a mosaic of multiple scenes versus
single-scene per time-step input approach to CLASlite
3.0. We sought to determine if the new, mosaicked ap-
proach significantly increased the change area monitored
in the observation periods and if the detection under
both approaches is valid. To this end, the individual
uxiliary scene (middle) and mosaic (right). Gaps could be filled
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fractional cover maps of the central scenes were ana-
lyzed in a multi-temporal forest cover change analysis
with the same default thresholds for the CLASlite 3.0
decision tree [27].
The single-scene approach, using only the central

scenes with the same time steps as described earlier, thus
following a conventional CLASlite processing, managed
detected 45.59% (13,988.3 ha) of the deforestation mapped
from 1986-2011 by the mosaicked fraction cover scenes
(30,681.3 ha). In line with the principle of conservative-
ness [26], the most conservative option, 100% for DFAR
was used. In all time steps, the mosaicked scene approach
produced more forest cover change than the single
scene approach – which is likely due to the addition of
artifact-free pixels integrated from additional scenes to
the observation area.
The mosaicked scene approach not only added 54.41%

to the absolute forest cover change of the single scene
approach, but also showed good spatial overlap with the
single scene change results. Spatial overlap per time-step
ranged from 37.05% (1991-1996) to 94.36% (1996-1999),
averaging 62.43% over the entire observation period.
This still leaves a substantial portion of single scene
change results that are not picked up by the mosaicked
approach.
We also analyzed how additional detected areas of

forest change in the filled mosaic pixels might influence
the change results. The additional forest change from
the mosaicked approach, located in areas previously
without data in the single-scene approach, varied from
7.52% (1986-1991) to 74.42% (2002-2011). On average,
additional pixels in the mosaic approach resulted in a
39.11% in forest cover change over the single scene
approach.
A detailed visual inspection of both forest cover out-

puts with the original Landsat imagery indicated a high
probability of the mapped deforestation to be valid in
both approaches. Therefore we conclude mosaicking
fractional cover images, can aid in the assessment of for-
est cover in a greater proportion of the pixels allowing
better detection and quantification of deforestation in
environments of very low image quality due to persistent
cloud cover or even sensor failures (Landsat 7 ETM+
SLC-off ).

Comparison with previous work
For the study region, two independent deforestation
datasets were available, one from IDEAM [15], the other
from the University of Maryland, UMD [12]. A compari-
son of deforestation output from different remote sensing
approaches can help to quantify the impact of monitoring
approaches on estimated RELs [19]. REDD+ emission re-
ductions are only useful if they are achieved relative a real-
istic REL, and quantification of historical deforestation is a
central element to REL construction. In absence of histor-
ical, spatially extensive ground data, which are almost
never available, it is not possible to verify or falsify the
three datasets we compare here [26,28,29]. Instead, we
compare the predicted range of REL values calculated
from the deforestation results over the years 2000-2012
from the three different approaches, and we compare the
predicted range of reference emission levels.
The three deforestation datasets covered different ob-

servation periods, possibly complicating the interpret-
ation of the results. The study presented considered the
longest period of 25 years from 1986-2011. The IDEAM
dataset [15] covered 1990-2012, while UMD only covered
[12] 2000-2012. To look at long-term temporal dynamics,
we compare the three datasets in the 1990-2010 period in
terms of accumulated deforestation per hectare (Figure 4).
In the case of UMD [12], we incorporate the deforestation
output of the CLASlite analysis of 2000 (lower compared
to IDEAM) to allow for graphical comparison (Table 2).
Overall, IDEAM exhibited the lowest temporal vari-

ability and mid-levels of accumulated loss. Our results
using CLASlite demonstrated moderate temporal vari-
ability and the highest accumulated loss, while the UMD
method had the greatest temporal variability due to the
annual temporal resolution and the lowest levels of
accumulated loss. When the resulting imagery was visually
inspected, the UMD method generally under-estimated
deforestation losses compared to losses resulting from
the CLASlite or IDEAM approaches. For IDEAM [15],
the historical average rate of forest area loss was 1019.2
ha yr−1 between 2000 and 2010. Using CLASlite v3.0
with 100% artifact remover, the rate was 1288.9 ha yr−1,
and for UMD the calculated loss was 603.2 ha yr−1.
None of the three datasets indicated a clear increasing
or decreasing trend in annual forest loss, so no regres-
sion was warranted [20].
We quantified the impact of the three deforestation

datasets on the REL establishment. For simplicity we
applied an average emission facto of 500 tCO2e ha−1 for
each hectare of deforestation representing a single land-
use change from a uniform forest to agriculture. Earlier
we referred to the principle of conservativeness for GHG
emission reduction quantification to justify our choice for
the set of strict CLASlite v3.0 parameters that usually
result in the lowest deforestation values. One might con-
sider choosing the UMD approach for its extremely low
historical average forest loss rate compared to the CLA-
Slite and IDEAM output. However, such a decision would
ignore two critically important factors:

a) The CLASlite mosaic-approach and IDEAM
approach show a great similarity. Although the
two datasets switch in terms of accumulated
deforestation mapped in 2005, their overall



Figure 4 Accumulated deforestation in hectares, analyzing the same fractional cover mosaics with different parameters for the
“Deforestation Artifact Remover” of CLASlite 3.0.
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accumulated outputs are, after 20 years, different by
only 6.23%. Both approaches indicate an accumulated
deforestation of about 20,000 ha in the period of
1990-2010 (20,890 ha CLASlite vs 19,506 ha IDEAM).

b) The UMD dataset detects less than 50% of the output
mapped 2000-2010 by the CLASlite mosaic-approach,
and just 56% of the IDEAM mapping for the same
period. Remembering that we are dealing with a
region with chronic cloud and shadow cover, it is
possible that the global-scale automated UMD
technique is not able to detect much of the
deforestation in the region. Our visual inspection of
the satellite data strongly supports the hypothesis
that, in areas where IDEAM and CLASlite map
deforestation, UMD misses true change visible in
the raw satellite imagery.

The UMD approach uses a Landsat composite image
from the greenest pixel calculation provided by Google
Earth Engine [30]. We reviewed the Landsat greenest
pixel product of [30] for the study region, and evaluated
its use as a basis for the image mosaic approach. We
have found that using the greenest NDVI or other met-
rics for image or pixel-scale mosaicking such as with the
Google product severely reduces the amount of apparent
Table 2 Annual reference emission level calculated from
three different deforestation datasets

Emission factor
[tCO2e/ha]

Average loss
2000-2011 [ha]

Annual REL
[tCO2e]

IDEAM 500 1,019.23 509,615

CLASlite 500 1,288.95 644,473

UMD 500 603.24 301,619
forest cover lost over time, and in some regions it vastly
over-estimates forest recovery. Moreover, the automated
approach may include blurry and noisy data in the Google
composites. Manual selection results in a much more
consistent and reliable set of image inputs for use in defor-
estation and forest degradation detection and monitoring
over time.
The UMD dataset is a very interesting experiment in

automated global landcover mapping and change detec-
tion. It sparked a lively scientific discussion where it
drew much acclaim and some criticism [31], including
responses from the authors [32]. It provides an under-
standing of the general trajectory of forest cover change
in any given country without differentiating between nat-
ural forest and plantation cover changes, while the later
might include tree energy crops such as oil palm. This
lack of ability to differentiate between natural old growth
forests and plantation is true for all three approaches
compared here [12,15,17]. The results can be viewed as
indications of relative changes in forest dynamics (e.g.
comparing the deforestation rate of an earlier period to
a later period), but it the use to actually map absolute
rates of old growth forest cover change for REDD+
purposes should be considered with caution and local
interpretation.
All automatic land cover classification products can be

validated for recent time steps by ground truth data in
the form of confusion matrices [28], but ground truth
data was not available to this study. For land cover &
land use change products referring to periods several
years in the past, map validation remains challenging.
In a few instances, historic high resolution imagery such
as aerial photography can be applied, but generally
periods further in the past coincide with a lack of high
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resolution imagery and systematically sampled ground
truth data.

Outlook for subnational RELs
REDD+ continues to be a concept in active development,
and it has substantially evolved from a vague idea of “pay-
ments for forest carbon sequestration and storage” to real
tests, for example in the Noell-Kempf Project [9] or the
Kariba REDD+ Project [33]. REDD+ is taking a prominent
role in international climate change mitigation negotia-
tions [1,22], and continues evolve through the develop-
ment of a variety standards certifying REDD+ projects
(CCBS, VCS, PlanVivo, ACR, CAR [34,35]). The latest
progress in this field was the publication of the VCS Juris-
dictional and Nested REDD+ Requirements [21], the
Warsaw UNFCCC decisions on REDD+ [1], and the FCPF
Carbon Fund Methodological Framework [24]. On the
other side, the first embryonic developments of compli-
ance carbon trading schemes accepting and actively sup-
porting international REDD+ offsets [34] are taking shape
with the integration process of the system of payments for
ecosystem services in the Brazilian state of Acre and the
California compliance carbon offset and trading scheme.
The link between the two could potentially be a verifica-
tion of Acre’s GHG emission reductions by [21], and an
acceptance of this approach into the California system.
From a REDD+ perspective, it should be noted that ap-

plying a REL built on forest carbon emissions has profound
implications for whether a performance-based conservation
program is adequately compensated. A REL built on an
inaccurately low deforestation rate poses significant risks.
For example, if due to underreporting, the REL only cap-
tures 50% of the average historic loss, a comparison with
the REL built on underreporting would show no emission
reduction against a true 50% decrease today. This would
reduce or eliminate any real emission reduction based on
REDD+, thus preventing financial resources from being
allocated to a successful emissions reduction activity. The
efficient allocation of financial resources to the most
cost-effective climate change mitigation actions is a key
rationale for REDD+, MRV and performance based pay-
ments [1,3,9,22,24,26,28,34].
The role of NASA’s Landsat mission continues to stand

out as primary data source for tropical historic land cover
and land use change analysis, although the variety of
sources is ever expanding and barriers to satellite data
access are decreasing over time. Without entering an in-
depth analysis on reasons for Landsat’s dominance, certain
factors likely play a role: free access, easy catalog search,
long-time continuity and a broad body of scientific re-
search supporting the use of Landsat. However, the fail-
ures of Landsat 7 ETM+ SLC instrument 2003 and of
Landsat 5 TM late 2011 have left data gaps in many areas
until the new Landsat 8 became operational in June 2013.
Approaches such as the framework presented in this
study, to be implemented by single platform users or
sophisticated cloud-computing approaches [16], can help
to bridge these gaps, reduce uncertainties in historic
observations and standardize the comparability of results
by the application of the CLASlite modules for high qual-
ity image pre-processing and classification. This new
approach can advance subnational REDD+ baselines and
reference emission levels, considered crucial for verifiable
emission reductions and forest carbon finance efforts.

Conclusions
The proposed approach extends the traditional applica-
tion of CLASlite for forest cover change monitoring and
adds to CLASlite’s automation, speed, lowered technical
barriers and mapping accuracy a new way to address
incomplete imagery as a result of from clouds, shadows
and sensor-failures. While this study only used automatic
cloud and shadow masking of CLASlite, users can also
easily decide on inclusion or exclusion of regions of inter-
est, by manually drawn polygons (e.g. to mask smoke from
fires distorting fractional cover values).
The proposed framework could support extended spatial

and temporal observation coverage of a given region and
monitoring period, where incomplete images and sensor
failures limit spatial coverage and number of time steps.
This may, in turn, contribute to increased validity, reduced
workload and cost, and an inclusion of more time steps
per monitoring period to capture forest cover change
dynamics more aptly. This can also increase the fit of cur-
rently proposed regression equations to predict the quan-
tity of future deforestation [20]. The mosaicked fractional
cover scene approach can be a useful extension of observ-
able area in time-series with the aim of detecting deforest-
ation with CLASlite 3.0 when a user in a tropical region
without cloud free season does not have access to more
sophisticated approaches that select the greenest pixel per
location [16]. The presented approach also supports expe-
rienced CLASlite users with limited resources who wish to
expand their observable area in their time steps instantly
with techniques already at their disposal.
Fractional cover values per pixel are products of a nor-

malizing, yet iterative process that takes reflectance
properties into account to find a best fit from spectral
libraries. So, if not obscured by atmospheric phenomena
missed by the cloud & shadow masking module (e.g.
haze) or partial sensor failures (SLC-off pixel with values
in some but not all 6 spectral bands), each pixel has the
same validity whether coming from a July or March scene
of the year of interest. This is mainly true for seasonal
tropical forests, which are a common focus of CLASlite
and our case study region.
A limitation to the proposed approach remains the

subjective selection of a central scene and its auxiliary
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scenes to construct a meta-time step. This leaves the
possibility that from the central scene not all sub-
optimal pixels are masked and therefore are not replaced
by mosaicking with the auxiliary scenes even if those
would have clear-sky information at this location. Thus,
information distorted by atmospheric phenomena (e.g.
haze) potentially not accurately corrected in the modules
of CLASlite would enter the final mosaic. Such sub-optimal
pixels are avoided by more sophisticated approaches that
select the greenest pixel per location using NDVI from all
imagery taken of the year to generate an annual composite
of maximum difference in photosynthetic vegetation (PV)
between forests and non-forest land covers [27].
Calculating deforestation rates, we correct for the fact

that central scenes are not the same acquisition date per
year, by calculating an annual deforestation rate normal-
ized for the number of days between time steps. We
justify our recommendation to use absolute values of
predicted area of deforestation and degradation for
REDD+ REL development instead of rates.
As noted in earlier reviews of CLASlite deforestation

outputs [19] and in the User Guide itself [27], the results
of CLASlite – whether from a single-scene or multi-scene
approach – should be carefully inspected and interpreted.
Applying the principle of conservativeness for REDD+
projects – a manual subtraction of perceived false positive
change results is always allowable, e.g. by vectorization of
results and editing.

Methods
Landsat data availability
Freely available Landsat imagery from the United States
Geological Survey was characterized by high cloud cover
throughout the study region. Between 2002 and 2009,
Landsat 5 Thematic Mapper (TM) imagery also had a
time gap, leaving us with only Landsat 7 Enhanced The-
matic Mapper (ETM+) data containing the Scan Line Cor-
rector (SLC) error that occurred in 2003, rendering each
image missing pixel data in stripes across the outer ~30%
of each image. Mosaicking of multispectral imagery from
different acquisition dates often brings changed radiance
properties, however, various approaches have been devel-
oped and applied [36-38]. This leaves the user with the
option to classify incomplete imagery separately, assess
map accuracy separately, and later mosaic land-cover clas-
sification products. Such efforts with incomplete imagery
require much more work, and are ultimately severely lim-
ited by a scarcity of valid ground truth data for classifica-
tion training and for map validation. This incomplete
imagery problem that plagues many large-scale multi-
temporal monitoring efforts of forest cover change can be
remedied by using CLASlite’s unique ability to calculate
fractional cover values invariant from radiance value prop-
erties through standardized atmospheric correction and
the iterative fitting of reflectance values to spectral librar-
ies of typical fractional covers. Given the limited Landsat
data availability for our study region, we selected a moni-
toring period from 1986 to 2011 – a 25 year period cov-
ered by six time steps (1986, 1991, 1996, 1999, 2002, and
2011), and therefore five sub-periods with deforestation
(net forest change) analysis.
As the main advantage of the presented approach is a

low barrier improvement to forest cover monitoring in
highly clouded areas, it should be noted that other tech-
nologies, such as InSAR (Interferometric synthetic aper-
ture radar) also hold great value for observation of forest
cover in highly cloudy regions. Most prominently, the
PALSAR (Phased Array type L-band Synthetic Aperture
Radar) sensor on the Japanese ALOS (Advanced Land
Observation Satellite) has been repeatedly applied for
this purpose [39,40], including the Pacific Coast of
Colombia (Niels Wielaard, personal communication).
Please also see section 2.9.3 of [26] for discussion of the
technology in the context of REDD+. There are some
qualifications to be made about InSAR based deforest-
ation monitoring: Though not insurmountable, the pro-
cessing of InSAR imagery requires an even more
specialized expert-knowledge than the application of
multi-spectral imagery in a semi-automated process
such as CLASlite v3.0 already demands. Several factors
such as terrain relief particularly pronounced in the
Chocó department require careful correction in order to
avoid distortions to land cover & land use change re-
sults. For the analysis of historic deforestation, the con-
tinuity of imagery time-series and free data availability is
an important aspect, where NASA´s Landsat mission re-
mains unmatched. Recognizing the great potential and
contribution of InSAR applictions to tropical forest
monitoring, we focus in this study on presenting a low
barrier approach for users with limited resources.

Image calibration in CLASlite
CLASlite contains an automated set of algorithms that
converts Landsat and other satellite images from raw
digital number (DN) recordings to final maps of forest
cover and forest change (both deforestation and forest
disturbance) [17]. CLASlite’s approach includes four
major automated steps, and several minor yet important
“bad-image” data masking steps [27]. First, the raw DN
images are converted to top-of-atmosphere radiance im-
ages using sensor offset and gain values provided by the
satellite data source (e.g. USGS for Landsat). Then the
radiance images are converted to apparent surface re-
flectance using a combination of atmospheric correction
with the 6S model [41] and, if needed, haze correction
[18]. Within this step CLASlite 3.0 offers the a standard
set of masking parameters, which use optical and ther-
mal channels from Landsat to remove conservatively
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mask or remove portions of the image that contain
atmospheric phenomena like haze, clouds, cloud edges
and shadows, and topographic shade [17]. The user can
select the “Reduced Masking” option, in order to de-
crease the area masked by altering the sensitivity of the
optical and thermal channels to cloud and cloud shadow
spectral signatures. In this study we found that the
masking process widely avoided problems of deforest-
ation over-detection, but also conservatively masked
many pixels with apparently valid DN values for which a
valid fractional cover calculation seemed reasonable.
For forest cover change, the original forest cover (1986

in our case) is important in order to map change from
it. To maximize our chances of picking up valid forest
cover change, we utilized the “Reduced Masking” option
for the original forest cover of 1986, but the standard
masking for the later time-steps of change detection –
thus increasing our valid original cover, but mapping
change still conservatively.

Generating fraction covers by AutoMCU
Image calibration is followed by the most important
step in CLASlite: the Automated Monte Carlo Unmixing
(AutoMCU) algorithm [42,43], which is applied on the
image, providing the fractional cover of photosynthetic
vegetation (PV), non-photosynthetic vegetation (NPV),
and bare substrate (S) on a scale from 0-100% cover in
every image pixel. Critical to this study, the AutoMCU
employs spectral endmember libraries for PV, NPV and S
that are derived from thousands of hyperspectral mea-
surements made using field, airborne and spaceborne
imaging spectrometers [17]. Because the PV, NPV and S
spectral libraries already incorporate enormous variation
in reflectance properties of land covers, including under
widely varying atmospheric conditions, the probabilistic
approach usually leads to a very stable result in each pixel,
even if the data come from different sensors or times of
Figure 5 Comparison of accumulated deforestation output of the IDE
the year (as long as the data are not heavily cloud or atmo-
spherically contaminated). This provides leverage for com-
positing different spatial subsets of AutoMCU output to
allow for mosaicking the clearest pixels throughout a re-
gion otherwise heavily contaminated by clouds over time.
The final step of CLASlite takes the outputs from the

reflectance and AutoMCU (PV, NPV, S) steps, and applies
a series of decision trees to estimate forest cover on
single-date imagery and forest change on multi-temporal
images [17]. The decision trees have been steadily ex-
panded and improved to allow for multiple tropical forest
types, from lowland to montane forests. These decision
trees are mostly empirically derived from validation
studies in the field, and by input from the CLASlite
user community [27]. In total, 17 Landsat 5 TM &
Landsat 7 ETM+ scenes were obtained and processed
using the CLASlite approach.

Mosaicking fractional covers
Mosaicking the individual fractional cover of CLASlite
follows a minimal invasive approach to not distort DN
values. The image identified as the best central scene of
the time-step is used as top image, the other auxiliary
scenes below. DN value -1 which represents masked
areas in the fractional cover is used as “see through
value” in order to allow fill-in from the auxiliary scenes.
No color-matching is applied, so each valid fractional
cover value per pixel entering the final mosaicked image is
the same as coming out of CLASlite’s original processing.
The results of increasing areas filled with multispectral
reflection information is shown in Figure 5 below – base
image left, auxiliary fill image middle and mosaicked
image on the right.
To define which images were candidates for mosaicking

of their fractional cover images, rules were established to
facilitate multi-temporal analysis. At each time step we
identified a central scene of best quality. Additionally up
AM, CLASlite v3.0 and UMD methogologies.
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to three other auxiliary scenes were selected within the
temporal range of +/- 12 month around the central scene.
Because forest types in the project area are evergreen, we
assumed minimal seasonal effects on reflectance due to
phenology. In addition, the spectral libraries within the
AutoMCU sub-module of CLASlite allow for some degree
of phenological variation in the spectra, with minimal
effects on the fractional cover estimates.

Estimation of deforestation rate
Under Decision 11/CP.7, the UNFCCC defined deforest-
ation as: “the direct, human induced conversion of forested
land to non-forested land.” This requires the application of
a threshold between forested and non-forested land. We
apply the forest definition reported by the Colombian Des-
ignated National Authority (DNA) to the UNFCCC CDM
Executive Board:

Minimum forest area: 1 hectare
Tree crown cover value: 30%
Tree height (or in situ potential to reach it): 5 meters

Deforestation rate is an important parameter to express
deforested area comparable between all locations and
scales. Puyravaud [44] suggested a standardized approach
to calculate deforestation rates which has hence been
widely applied, e.g. as baseline approach in [20], which
can be applied to develop REDD+ RELs [21-23,25]. To
calculate an annual deforestation rate, it is necessary to
adjust for the fact that satellite scenes per time step may
not fall in the same month. A simple calculation using
only years would look like:
Deforestation rate yr− 1 = {[1/(Year A2– Year A1)] × log

(A2/A1)} × 100, where:
A1 = Forest Area at beginning of time step
A2 = Forest Area at end of time step
Year A1 = Year of beginning of time step
Year A2 = Year of end of time step
This, however, could lead to distorted results as it

would assume that a forest is always observed in the
same month of each year, and thus the number of
months between beginning and end of a time step impli-
citly being (Year A2 – Year A1) × 12. As is often the
case, this is not the situation in our study, as the months
of acquisition of our central scene varied from January
to July.
Fortunately it is simple to include dates of image ac-

quisition into Puyravaud’s [44] equation, adding the day
count per year as a digit number. The exact day count is
divided by 365.25 thus giving values ranging from 0.000
to 0.999. For example 17th of July 1999 is translated to
1999.542. This way the difference between time A2 and
time A1 accounts for the acquisition dates of the central
image per time.
Deforestation rate yr− 1 = {[1/(time A2 – time A1)] × log
(A2/A1)} × 100
where:
A1 = Forest Area at beginning of time step
A2 = Forest Area at end of time step
time A1 = Year and day count as digit number of be-

ginning of time step
time A2 = Year and day count as digit number of end

of time step
This topic becomes relevant, if for development of a

REDD+ REL to project future deforestation from historic
trends, rates of loss per year are used and not averages
of absolute observed deforested area.
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