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Terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAVs)

equipped with digital cameras have attracted much attention from the forestry

community as potential tools for forest inventories and forest monitoring. This

research fills a knowledge gap about the viability and dissimilarities of using

these technologies for measuring the top of canopy structure in tropical forests.

In an empirical study with data acquired in a Guyanese tropical forest, we

assessed the differences between top of canopy models (TCMs) derived from

TLS measurements and from UAV imagery, processed using structure from

motion. Firstly, canopy gaps lead to differences in TCMs derived from TLS

and UAVs. UAV TCMs overestimate canopy height in gap areas and often

fail to represent smaller gaps altogether. Secondly, it was demonstrated that

forest change caused by logging can be detected by both TLS and UAV

TCMs, although it is better depicted by the TLS. Thirdly, this research shows

that both TLS and UAV TCMs are sensitive to the small variations in sensor pos-

itions during data collection. TCMs rendered from UAV data acquired over the

same area at different moments are more similar (RMSE 0.11–0.63 m for tree

height, and 0.14–3.05 m for gap areas) than those rendered from TLS data

(RMSE 0.21–1.21 m for trees, and 1.02–2.48 m for gaps). This study provides

support for a more informed decision for choosing between TLS and UAV

TCMs to assess top of canopy in a tropical forest by advancing our understand-

ing on: (i) how these technologies capture the top of the canopy, (ii) why their

ability to reproduce the same model varies over repeated surveying sessions

and (iii) general considerations such as the area coverage, costs, fieldwork

time and processing requirements needed.
1. Introduction
Forest ecosystems are an important global resource playing key roles in both the

environment and the economy. In the context of sustainable development and cli-

mate change mitigation, tropical forests are a major focus for research due to the

role they play in the global carbon cycle, and recently, in climate mitigation pol-

icies through REDD (reduced emissions from deforestation and degradation) [1].

Remote sensing techniques are increasingly valued by ecologists for the unique

perspective they offer to describe ecosystem states and dynamics [2]. They have

proven to be successful when it comes to understanding forest structure, from

plot-scale measurements using terrestrial laser scanning (TLS) [3–9], to meso-

scale (1–100 km2) using aerial laser scanning [10–14] and aerial imagery [15–

17], and up to global-scale perspective from satellite imagery [18,19], radar [20]

and light detection and ranging (LiDAR) [21,22].

In recent years, TLS and airborne laser scanning (ALS) have attracted much

attention from the forestry community as rapid and efficient tools for quantifying
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Figure 1. (a) Riegl VZ-400: upright position (i) and tilted position (ii). (b) Scanning configuration. The 13 scanning positions are set around the predicted falling
direction of the tree, on a 3 � 3 grid with four additional interleaved positions.
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forest parameters. Although researchers confirm that ALS is an

adequate method to estimate canopy height in coniferous and

deciduous forests [11,12,23,24], there are few studies that have

evaluated canopy height with ALS in tropical forests [25–29].

In turn, TLS is capable of acquiring levels of detail far beyond

what ALS is capable of [30]. The high-resolution capability

offers many exciting opportunities for vegetation research,

and several studies [3–9] have explored TLS applications in

measuring forest structure and tree parameters.

More recently, the usage of small unmanned aerial vehicles

(UAVs) has increased dramatically. This has been made poss-

ible by advancements in technology such as the availability

of accurate and miniature global navigation satellite systems,

inertial measurement units, smaller and lighter batteries, and

high-quality consumer digital cameras. With the advent of

new algorithms, such as the Scale Invariant Feature Transform

(SIFT), that can directly georeference and rectify the imagery

with only low accuracy camera positions, UAVs also found

their use as remote sensing tools [31]. These platforms can be

customized and equipped with different sensors [32]. For

example, Wallace et al. [33] are using a UAV equipped with

laser scanning sensors, while in other studies [31,34–38],

UAVs equipped with digital cameras are used.

At present, UAVs equipped with digital consumer cameras

are considerably cheaper compared with UAVs equipped

with laser scanning sensors. The large sets of overlapping

digital photographs, taken from different locations, can be

automatically post-processed to geometrically precise three-

dimensional point cloud datasets [35], using computer vision

structure from motion (SfM) algorithms.

The goal of this study is to provide a comparison between

UAV-SfM and TLS in assessing the top of canopy structure, at a

study site in the tropical forest of Guyana. We assessed (i) how

different features in forest structure affect the quality of the top

of canopy modelled with the two technologies, (ii) how accu-

rately forest change is captured by the two technologies and

(iii) if, over repeated surveying sessions, the TLS and the

UAV-SfM derived point clouds render the same top of

canopy model (TCM).
2. Material and methods
2.1. Study site
The fieldwork data were acquired in November 2014, in a rect-

angular plot of 30� 40 m, in a tropical forest of central Guyana
(6820100 N, 588410550 W), south of Bartica. The climate is tropical,

with rainfall of 2764 mm yr21 at Bartica Station (hydromet

data 1958–1975) [39], and two distinct dry periods: January to

March and August to September [40]. The mean daily tempera-

ture over the year is 258C. The region containing the study area is

covered by dry evergreen forest, which is found almost exclusively

on well-drained, bleached white sands [39]. In the region, the aver-

age tree density (with a diameter at breast height greater than

10 cm) is 650 trees ha21, while the mean number of species is

68 species ha21 [41].

2.2. Equipment and data collection
The fieldwork data, both TLS and UAV, were acquired over the

same plot, at two different periods of time that were 3 days apart.

Between the two sessions, a tree was harvested in the plot area to

study the sensitivity of the two modelling technologies to change.

2.2.1. Terrestrial laser scanning data collection
TLS data were collected using a Riegl VZ-400 (figure 1a). The instru-

ment has a rate up to 122 000 measurements per second and a

measurement range up to 600 m. It offers a 3608 horizontal and

1008vertical field of view and uses a Class 1 near infrared laser beam.

To construct full hemispherical scans, data were acquired

using both upright and tilted instrument positions. There were

13 upright scans and 13 tilted scans for each of the two survey

sessions (pre-harvest and post-harvest), for a total of 52 scans.

The scanning positions were marked with reflectors following

the configuration shown in figure 1b. This was done to ensure

that the same area is scanned before and after tree harvest.

2.2.2. Unmanned aerial vehicle data collection
For this fieldwork, airborne digital photographs were collec-

ted using a small multi-rotor UAV (Aerialtronics Altura AT8)

equipped with a HYMSY (Hyperspectral Mapping System)

sensor. HYMSY is a lightweight (2.0 kg) hyperspectral pushbroom

system developed for small UAVs that consists of a custom-made

pushbroom spectrometer, a GPS inertial navigation system unit,

and a Panasonic GX1 camera [32].

To create the canopy model, images from the Panasonic GX1

camera were used. The camera was triggered once every 2 s, with

the focus of the lens fixed to infinity. The mean height of the

waypoint flights varied between 50 and 70 m above ground

level (appendix A). The hyperspectral data of HYMSY were

not used for analysis in this study.

2.3. Pre-processing of the collected data
Using the reflectors and multistation adjustment, the point clouds

from each TLS scan position were co-registered, following the

http://rsfs.royalsocietypublishing.org/
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Figure 2. Close-up on the canopy of one emergent tree: TLS point cloud (a), TLS and UAV aligned point clouds (b), UAV point cloud (c).
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protocol described in Gonzalez de Tanago et al. [42]. To obtain a

point cloud from the aerial photographs, the SfM technique was

used in combination with dense stereo-reconstruction techniques.

The photographs taken above a certain flight altitude were selected

and converted to 8 bit-tiff format. For the rest of the procedure,

Agisoft PhotoScan Professional v. 1.1.2 was used (appendix A).

First, photographs were aligned, by applying the SfM technique.

To do this, the SfM uses algorithms such as SIFT [43] to detect

image feature points and matching them between images.

A bundle block adjustment was then performed on the matched

features to identify the three-dimensional position and orientation

of the cameras, their internal calibration and the XYZ location of

each feature in the photograph, resulting in a sparse point cloud.

Lastly, the majority of geometric scene details are built, by apply-

ing a dense, multi-view stereo-reconstruction on the aligned image

set [44]. Then, the TLS and UAV point clouds were co-registered

(figure 2), and the TCMs were constructed by selecting the highest

point within a 30 cm grid cell, converting the surface to raster

format for further analysis.

2.4. Data analysis
2.4.1. Forest structure features influencing the terrestrial

laser scanning and unmanned aerial vehicle top
of canopy models

To determine whether there are differences between the TLS and

UAV TCMs a difference raster was calculated, by subtracting the

value of each pixel of the TLS TCM raster from the corresponding

pixel of the UAV TCM raster. Further, four cross sections were ana-

lysed in detail to determine whether there are spatial patterns in the

differences between the TLS and the UAV TCMs. The sampling

strategy for the cross sections (figure 3) was designed to cover

most of the plot area (Profiles 1 and 2), to cross the harvested tree

(Profile 3) and to cross the gap left by the harvested tree (Profile 4).

The heights in the profile graphs are relative to the local coor-

dinate system defined by the position of the TLS device in the

first scan position, and the values should not be mistaken for

tree heights. The horizontal origin of the graphs is the beginning

of the transect (left for Profile 1, Profile 3 and Profile 4; top for

Profile 2).

It is expected that the largest differences between the TCMs

occur in canopy gaps, as Lisein et al. [36] suggest that ‘fine-

scale gaps’ are not correctly reconstructed. Therefore, all areas

representing canopy gaps were evaluated in more detail, and

the mean height difference (m) and the percentage of area

having a positive height difference (%) were calculated.

2.4.2. Forest change detection
To assess the sensitivity of the two modelling technologies to forest

change, a difference raster was computed, by subtracting the post-
harvest TCM from the pre-harvest TCM for both the TLS and the

UAV data. For the gaps created by the fall of the harvested tree

(gaps G8, G9, G10 and G11; figure 3), and for the trees emerged

from the understory (trees U, X, W and V; figure 3), the mean

height difference (m) and the standard deviation (m) were calcu-

lated using the values of all pixels delineated by the contour of

the gap or tree (figure 3), for both the TLS and the UAV TCMs.

2.4.3. Sensitivity over repeated surveying sessions
To assess if TLS and airborne SfM derived point clouds render

the same TCM over repeated surveying sessions, the difference

raster computed above was analysed on the areas not affected

by the fall of the trees (figure 3).

For each tree or gap identified in the plot, that was not

affected by the harvesting of the crop tree, the mean height

difference (m) and the standard deviation (m) were calculated

using the extent of the object on the pre–post difference raster,

for both the UAV TCMs and the TLS TCMs.
3. Results
3.1. Forest structure features influencing the terrestrial

laser scanning and unmanned aerial vehicle top
of canopy models

The TCMs from the TLS and the UAV match each other within

0.5 m in 77% (pre-harvest) and 71% (post-harvest) of the pixels

(figure 4). On average, on the pre-harvest plot, the UAV TCM is

þ0.20 m above the TLS TCM. However, the distribution of

the difference is uneven, as the 99th percentile of the height

difference is þ11.42 m (UAV above TLS) while the 1st percen-

tile is just –1.41 m. This indicates that in the places where the

UAV TCM is higher than the TLS TCM, the differences in

height estimation are large. The same patterns can be observed

for the post-harvest TCMs, where, on average, the UAV TCM

is þ0.76 m above the TLS TCM, with the 99th percentile of

the height difference being þ21.10 m and the 1st percentile

being 22.20 m.

In areas where the canopy is tall (figure 5), the UAV TCM

and the TLS TCM match well. However, the UAV TCM did

not model low areas well thus it overestimated the height in

gap areas. This overestimation is emphasized even more in

the post-harvest scatterplot (figure 5) because the harvest of

the crop tree created a gap in the canopy, meaning there are

more low height areas in the post-harvest plot than in the

pre-harvest one.

The UAV and the TLS show differences in TCMs, particu-

larly in areas where canopy gaps exist (figure 6). While the
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Figure 4. Height differences (UAV minus TLS) between the pre-harvest TCMs (a) and post-harvest TCMs (b). Positive values (teal) show a higher UAV canopy model,
especially in gap areas.
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small canopy gaps (G3, figure 6a; G2, figure 6b and figure 6c;

G11, figure 6d) are completely missed by the UAV TCM,

the deeper and larger ones (G1, figure 6b; G8, figure 6d ) are

underestimated by the UAV TCM.

To confirm the pattern observed, all gaps identified in the

orthophotos illustrated in figure 3 were evaluated. The height

difference between the UAV and TLS TCMs was calculated
as a raster with the extent of each canopy gap. In all gaps,

the UAV TCM is on average higher than the TLS TCM

(mean height differences between 0.19 and 13.83 m). Out of

14 gaps, seven have a positive height difference on more

than 85% of the area, three of the gaps have a positive

height difference on more than 70% and three have more

than 50% of the area where the UAV TCM is higher. Gap

http://rsfs.royalsocietypublishing.org/
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G6 is the only one that has a positive height difference for less

than 50% of the area.

3.2. Forest change detection
The harvest of the tree is clearly detected by both the TLS and

the UAV TCMs. In both the TLS pre–post difference (figure 7a)

and UAV pre–post difference (figure 7b), a big positive differ-

ence (colour purple) can be observed between the pre-harvest

survey session and the post-harvest survey session.

The depth of the canopy gaps, created by the harvesting

of the tree, however, differs between the two modelling tech-

nologies (figure 8) with the UAV underestimating the depth.

The biggest difference can be observed in gap G8 (RMSE of

15.43 m). Nevertheless, figure 8 also shows that the unders-

tory trees that remained in the canopy gap created by the

harvest of the crop tree are similarly modelled.

3.3. Sensitivity over repeated surveying sessions
Although considerably smaller, differences between the

TCMs rendered at different points in time exist not only in

the area affected by the harvest of the crop tree, but also in

the rest of the plot (figure 7).

For all trees, the RMSE of the height differences between the

initial survey session (pre-harvest) TLS TCM and the repeated

survey session (post-harvest) TLS TCM is between 0.21 and

1.21 m. For the UAV TCM, the RMSE of the height differences

between the initial and repeated survey sessions is between

0.11 and 0.63 m. For gaps, the RMSE of the height differences

between the initial TLS TCM and the repeated TLS TCM was

between 1.02 and 2.48 m, while the RMSE of the height differ-

ences between the initial and repeated UAV TCM is between

0.14 and 3.05 m.

These results indicate that the TCMs rendered from UAV

data, acquired over the same area, at different moments, are

more similar than TCMs rendered from TLS data, acquired

over the same area, at different moments. This pattern is illus-

trated in figures 9 and 10, i.e. the height difference between

the initial and repeated TLS TCMs is more spread around

the mean than the height difference between the initial and

repeated UAV TCMs.
Our analysis shows that TCMs rendered from TLS- and

UAV-derived point clouds are sensitive to the survey set-up,

and differ slightly over repeated surveying sessions.
4. Discussion
4.1. Top of canopy models
In our study, the TLS and the UAV TCMs were similar. Based

on a literature review, which suggested that in tropical forests

the TLS might not be able to reach the top of canopy due to the

effect of occlusions [3,4,6,8], a bigger difference between the

TLS and UAV TCMs was expected than was seen. Further-

more, it was expected that the taller the trees are, the bigger

the difference, because it is more likely that the TLS would

not to capture the top of it. However, a high positive Pearson

correlation coefficient (0.76 for pre-harvest TCMs and 0.71 for

post-harvest TCMs), and a relatively small RMSE (2.20 m for

pre-harvest TCMs and 3.92 m for post-harvest TCMs), show

that the TLS and the UAV TCMs are very similar. This may

be due the very dense configuration of the TLS scanning pos-

itions used for this study and the multiple return capabilities of

the scanner. For other experimental settings, instruments, or

subtypes of tropical forests, the outcomes could be different.

Our results are comparable to those found in the literature.

Lisein et al. [36] obtained a correlation of 0.86 between the

TCMs extracted from their photo canopy height model

(CHM) and from the ALS CHM, using a window size of

20 � 20 m for an area of 197.7 ha. Aside from the fact that

Lisein et al. [36] compared UAV-SfM with ALS and not UAV-

SfM with TLS, as in this study, the lower correlation obtained

here can be explained by the different window size (20 �
20 m, compared to our 30 � 30 cm), and by the fact that they

did not include the areas that had a vegetation height lower

than 2 m in the computation of the correlation. Even a small

increase in window size in our study increases the correlation

between the two TCMs (e.g. for a 1 � 1 m pixel size, the corre-

lation is 0.84). Moreover, the correlation would have definitely

improved, especially for the post-harvest, if areas that had a

height lower than 2 m would not have been taken into account.
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4.2. Forest structure features
This study determined that canopy gaps strongly influence

how the top of canopy is modelled from UAV and TLS point

clouds. In areas where canopy gaps occur, the UAV TCM
overestimates canopy height. These findings are consistent

with Nayar & Kanade [45] who observe that in concave sur-

faces points reflect light between themselves and the shape

cannot be accurately recreated from stereo restitution. Another

http://rsfs.royalsocietypublishing.org/
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study conducted in a mixed forest in Belgium by Lisein et al.
[36] found that ‘fine-scale gaps’ are not correctly reconstructed

by image matching due to the problem of ‘dead-ground’,

caused by shadow cast in dense canopy cover. In addition,

Dandois & Ellis [35] mention that if the understory is brightly

illuminated, point recognition using computer vision is

enhanced, producing deeper and denser understory points.

The fact that canopy gaps are not accurately modelled from

the UAV-derived point clouds makes this technology less suit-

able for modelling top of canopy for gap-phase regeneration,

impacts of logging, light penetration, snow melting and

canopy rain interception.

4.3. Forest change detection
Both UAV-SfM and TLS have been used to monitor change.

TLS has been used to monitor various deformations (land,

bridges, other structures) [46–48], while both have been

used to monitor landslides [37,49]. While in these studies,

accuracies of the order of centimetres are obtained for both

instruments, it is important to keep in mind that the surveyed

surfaces (mostly bare soil or pastures with no trees) are static

at the moment of the survey, with no objects to cause occlu-

sions. This was not the case for the tropical forest surveyed

for this research.

The understory trees (U, X, W and V) that emerged in the

canopy gap created by the harvest of the crop tree were

detected by both the TLS and the UAV TCMs. As expected,

the trees were more accurately modelled than the newly cre-

ated gaps. Although the UAV-SfM does not model gaps well,

making its usage in monitoring gap-phase regeneration lim-

ited, the change produced by the harvest of the crop tree is

detectable (figure 7) and an indication that, despite not

being the most precise, UAV TCMs can be used to estimate

effects of logging.

4.4. Sensitivity over repeated surveying sessions
in tropical forest

The main cause for differences between the pre-harvest and the

post-harvest TLS TCMs is occlusion. Although the scanning
positions of the TLS were marked in the field, it is unlikely

that the instrument had exactly the same position and height

between the survey sessions. This means that the laser beam

hits other branches and passes through other gaps in the

canopy than in the previous session, causing a change in the

way canopy is modelled. Furthermore, differences may be

caused by wind. It did not seem windy at the moment of scan-

ning, but the presence of wind in the upper canopy cannot

be discarded.

Differences between the pre-harvest and the post-harvest

UAV TCMs occur, because images were taken from flights

that had different flight paths. The pre-harvest plot was photo-

graphed with the UAV starting from a road located southwest

of the plot, while the post-harvest data were acquired with the

UAV starting from a road located northeast from the plot. This

difference in flight path is accentuated when rendering the

understory in a canopy gap. Although the flights in this

research followed the same waypoints above the plot, some

differences due to the view angle were noticed, as some

GCP reflectors placed in canopy gaps were not captured in

the pre-flight, while they were captured in the post-harvest

flight.

The spotty pattern of the TLS (figure 7a), compared to the

smooth one of the UAV (figure 7b), appears in areas where

trees do not have a continuous top layer of leaves. All the

small peaks shown in the TLS graphs for trees F, H and I are

thin branches that the TLS captures and that are smoothed in

the UAV-SfM processing. This effect is also described by

Lisein et al. [36], who stated that trees with numerous and

abrupt fine-scale peaks and gaps in the outer canopy are

more affected by the smoothing effect induced by the dense-

matching. In their study, Fritz & Koch [50] also noticed that

thinner branches remain undetected by the UAV-SfM process.

The smoothness of the UAV TCM may be pronounced by

the option of ‘aggressive depth filtering’ when creating the

dense point cloud.
4.5. General considerations
For some purposes, such as calculating surface roughness for

atmosphere–land interaction models, or modelling light pen-

etration, the three-dimensional model of the top of canopy

alone is useful; nevertheless most studies also use canopy

height estimates as inputs. To derive the CHM, a digital terrain

model (DTM) must be subtracted from the TCM. TLS has the

advantage in that it produces a detailed DTM, whereas the

UAV-SfM cannot penetrate the vegetation to reach the

ground and so cannot render a DTM directly. Particularly in

high slope areas, the only possibility of rendering a DTM is

using UAV-SfM.

Both methods have their pros and cons in terms of oper-

ability. While the UAV used in this study had a limited flight

time of about 6 min that restricted the study area to the vicin-

ity of the lift-off site, other UAVs (such as the fixed-wing used

by Puliti et al. [38]) can fly up to 60 min. Likewise, TLS can

also have a limited study area, because the instrument itself

is heavy (approx. 10 kg), and a lot of additional equipment

is needed, which constrains the area of interest to the vicinity

of an access road. In the tropical forest of Guyana, in Novem-

ber, the biggest impediment regarding weather conditions is

rain. Neither the TLS nor the UAV can acquire data while it is

raining, firstly because water may damage the instruments,

and secondly because water droplets absorb LiDAR
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radiation and appear in the images taken from the UAV,

affecting the creation of the three-dimensional point cloud.

Wind is also undesirable, because movement of the tree

branches lowers the accuracy of the canopy model. Moreover,

high wind increases the safety risks of operating the UAV.

Both instruments can acquire data in full cloud cover con-

ditions. Moreover, in full sun conditions the shadows are

strong and clearly visible, causing gaps to be less illuminated

and difficult to accurately reconstruct from UAV imagery.

In overcast conditions, the shadows are less present, and

shadowed areas should give better models as the camera

exposure time can suit imaging those better. While a UAV

equipped with a consumer digital camera can be relatively

inexpensive (typically around 4000E [35]), and is even avail-

able for around 300E [51], a TLS is much more expensive,

around 100 000E [52].
 :20170038
5. Conclusion
Most differences between UAV and TLS collected data were

known before this study. The present research fills a knowl-

edge gap about the viability of using these technologies for

modelling the top of canopy in tropical forests. Our results

show that the UAV and TLS TCMs are largely similar,

especially in an undisturbed canopy. The main differences

between UAV and TLS TCMs are that the former is smoother

and less precise over gaps, while the latter is more detailed,

but also more sensitive to changes in the experimental set-up.

Data accessibility. All data needed to evaluate the conclusions of the
study are present in the paper. Additional access to the raw data,
Table 1. UAV imagery resolution.

flight altitude (m) canopy height (m)

Panasonic GX1

width (m) (cross-path)

50 30 24

70 30 48

Table 2. UAV processing parameters in Agisoft PhotoScan Professional
v. 1.1.2.

action parameter value selected value

align photos accuracy high

pair preselection disabled

build dense cloud quality high

depth filtering aggressive
processed data and R scripts can be provided by the authors upon
request.
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Appendix A
See tables 1–3.
height (m) (along path)
ground sample distance (cm)
(top of canopy for this study)

18 0.52

36 1.0

Table 3. Accuracy of photogrammetric processing.

RMSE (cm) of GCPs

before camera
optimization

after camera
optimization

pre-harvest flight 19.6 4.1

post-harvest flight 24.2 7.6
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