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Abstract

Wetlands are important providers of ecosystem services and key regulators of cli-

mate change. They positively contribute to global warming through their greenhouse

gas emissions, and negatively through the accumulation of organic material in his-

tosols, particularly in peatlands. Our understanding of wetlands’ services is currently

constrained by limited knowledge on their distribution, extent, volume, interannual

flood variability and disturbance levels. We present an expert system approach to

estimate wetland and peatland areas, depths and volumes, which relies on three bio-

physical indices related to wetland and peat formation: (1) long-term water supply

exceeding atmospheric water demand; (2) annually or seasonally water-logged soils;

and (3) a geomorphological position where water is supplied and retained. Tropical

and subtropical wetlands estimates reach 4.7 million km2 (Mkm2). In line with cur-

rent understanding, the American continent is the major contributor (45%), and Bra-

zil, with its Amazonian interfluvial region, contains the largest tropical wetland area

(800,720 km2). Our model suggests, however, unprecedented extents and volumes

of peatland in the tropics (1.7 Mkm2 and 7,268 (6,076–7,368) km3), which more than

threefold current estimates. Unlike current understanding, our estimates suggest that

South America and not Asia contributes the most to tropical peatland area and volume

(ca. 44% for both) partly related to some yet unaccounted extended deep deposits but

mainly to extended but shallow peat in the Amazon Basin. Brazil leads the peatland

area and volume contribution. Asia hosts 38% of both tropical peat area and volume

with Indonesia as the main regional contributor and still the holder of the deepest and

most extended peat areas in the tropics. Africa hosts more peat than previously

reported but climatic and topographic contexts leave it as the least peat-forming con-

tinent. Our results suggest large biases in our current understanding of the distribu-

tion, area and volumes of tropical peat and their continental contributions.
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1 | INTRODUCTION

Wetlands are global hotspots of biological diversity (Gibbs, 2000; Junk

et al., 2006), ecosystem productivity (Rocha & Goulden, 2009) and

economic activity (aquaculture, tourism, timber; Junk et al., 2014).

They are key regulators of biogeochemical cycles, including water

flows and associated nutrients (C, N, P), pollutants and sediments,

coastal erosion and land stabilization (Blumenfeld, Lu, Christophersen,

& Coates, 2009; Junk et al., 2013; Keddy et al., 2009). Wetlands also

play fundamental roles in climate change regulation and mitigation

with unmanaged wetlands being the largest and most uncertain natu-

ral sources of methane (CH4) in the global CH4 budget (Matthews &

Fung, 1987; Petrescu et al., 2010, 2015) and the presumed drivers of

the interannual variations in CH4 atmospheric growth rates (Denman

et al., 2007; Melton et al., 2013; Montzka, Dlugokencky, & Butler,

2011; Petrescu et al., 2015). Under favourable hydrological conditions

undisturbed wetlands are reported to act as moderate CH4 and N2O

sources (Frolking et al., 2011) or to counterbalance their CH4 emis-

sions (Petrescu et al., 2015), while also acting as long-term soil carbon

reservoirs dating back to the Holocene (L€ahteenoja & Roucoux, 2010;

Yu, Loisel, Brosseau, & Beilman, 2010). For their multiple ecosystem

services, the need for wetland conservation is widely recognized (i.e.

the Ramsar convention, Ramsar 2013) but has long been challenged

by national development policies and short-term economic priorities

(An et al., 2007; Junk et al., 2013; Keddy et al., 2009; Paulson Report,

2015). Thus, drainage, fire and conversion to agriculture and agro-

forestry are presently turning wetlands and peatlands into net emis-

sion sources of GHG (Frolking et al., 2011; Page et al., 2002; Petrescu

et al., 2015; Turetsky et al., 2015; Van der Werf et al., 2010), and

doing so at an accelerating pace (Davidson, 2014; Junk et al., 2013).

There are considerable uncertainty about fundamental wetland

variables such as their global distribution, spatial extent and temporal

dynamics (Melton et al., 2013; Montzka et al., 2011; Petrescu et al.,

2015; Wania et al., 2013; Zhang, Zimermann, Kaplan, & Poulter,

2016). Efforts to assess global wetland extents, and associated CH4

emissions include the Wetland and Wetland CH4 Inter-comparison

of Models Project (WETCHIMP; Melton et al., 2013; Wania et al.,

2013). Their results concluded that the estimates of wetland area

varied ca. fourfold in modelled area simulations (7.1–26.9 Mkm2) and

three-fold (4.3–12.9 Mkm2) in observational mapping (Melton et al.,

2013). The current variability in the estimates of wetland area still

precludes the appropriate parameterization of wetland models to

assess GHG emissions (Melton et al., 2013; Zhang et al., 2016). Part

of the variability in areas and volumes relate to definition issues, and

to the temporality of the inundation patterns which complicate com-

parisons among estimates (Junk et al., 2011, 2014; Page, Rieley, &

Banks, 2011). The lack of robust validation processes also affects

the available data, particularly in the tropics. This is problematic as

tropical peatlands are an important focus of international climate

change concerns due to the magnitude of their GHG emissions

under climatic and human pressures (Gaveau et al., 2014; Hooijer

et al., 2010; Montzka et al., 2011; Petrescu et al., 2015; Turetsky

et al., 2015; Van der Werf et al., 2008). The need for developing

robust, comparable, and detailed tropical wetland and peatland maps

could not be more urgent.

Methodologically, global wetland area assessments are complex

(Gallant, 2015) and have relied on either hydrological models or

remote sensing, or combinations thereof, but have been restricted to

coarse scales (i.e. Global Natural Wetlands by Matthews and Fung

(1987); the Global Freshwater Wetlands by Stillwell-Soller, Klinger,

Pollard, and Thompson (1995); or the Global Hydrographic Data

(GgHydro) by Cogley (2003), or the Global Lakes and Wetlands

Database, GLWD, by Lehner and D€oll (2004)). Moderate to fine

scales have lately been produced by combining multisource remote

sensing, hydrological models, and ground sampling, but they focus

on specific regions only (e.g. Bwangoy, Hansen, Roy, De Grandi, &

Justice, 2010; Draper et al., 2014; Dargie et al., 2017). The results

from these studies indicate that the historical records underestimate

wetland and peatland areas in the tropics. Considerations when map-

ping global wetlands and peatlands can be subdivided into:

1. Preassessment choices: including variations in the definitions of

wetlands and peatlands, and different spatial and temporal scales

used for estimating wetland and peatland areas. (Estupinan-

Suarez et al., 2015; Junk et al., 2014; Matthews & Fung, 1987;

Page et al., 2011; Zhang et al., 2016)

2. Assessment constraints: Methodological choices, which range from

the interpretation of analogic maps and topographic data to hydro-

logical modelling and to remote sensing both passive (optical,

microwave) and active (radar, LIDAR). Each method is constrained

by data availability, which is often cumbersome in tropical regions.

(Ballhorn et al., 2009; Draper et al., 2014; Estupinan-Suarez et al.,

2015; Melton et al., 2013; Wania et al., 2013)

3. Postassessment limitations: lack of ground-truthing data sets to

validate the location, area and carbon stocks of the identified

wetlands and organic soil areas. Frey and Smith (2007).

Partly considering the issues above, in this study we present a

novel method for mapping wetlands and peatlands in the tropics and

subtropics including estimations of their soil depths, at a spatial reso-

lution of 232 m. Our method draws on the premise that combining

different data sources and methods is the best approach to map

wetlands and peatlands (Bwangoy, Hansen, Roy, De Grandi, & Jus-

tice, 2010; Lang, Bourgeau-Chavez, Tiner, & Klemas, 2015; Zhang

et al., 2016). Our pantropical wetland/peatland map uses a hybrid

expert system method that combines hydrological modelling, time-

series analysis of soil moisture phenology from optical satellite

images and hydro-geomorphology from topographic data, to capture

key properties of wetland/peatland development.

Our goals are as follows: (1) to characterize the spatial distribution

of wetlands and peatlands in the tropics and subtropics; and (2) to

estimate the depths and volumes of peatlands. Peat is here defined

as any soil having at least 30 cm of decomposed or semidecomposed

organic material with at least 50% of organic matter. We compare

our wetland results with five well-known global data sets on wetland

estimates and our peatland maps with ground peatland points.

3582 | GUMBRICHT ET AL.



2 | MATERIALS AND METHODS

The study covers the tropics and subtropics (38°N to 56°S; 161°E to

117°W; pantropics), includes 146 countries but excludes small

islands, New Zealand and Taiwan (see country list in the Supporting

Information). Our wetland categorization builds on the Ramsar

(2013) definitions of wetlands (for a review of wetland classifica-

tions, see Finlayson & van der Valk, 1995). Of the five major wetland

types defined by Ramsar (2013), this study concerns estuarine, lacus-

trine, riverine and palustrine wetlands; marine wetlands are not

included. The size limitation used by Ramsar (i.e. 8 ha for defining

lakes) is disregarded in this study. In agreement with the Ramsar def-

initions, but in contrast to the traditional definition of swamps in the

United States, swamps are not necessarily forested. While the Ram-

sar definition is oriented towards ecological habitats, this study is

primarily oriented towards soil organic content based on soil mois-

ture conditions. We distinguish between seven main wetland cate-

gories: open water, mangrove, swamp, fen, riverine/lacustrine,

floodplain (and other intermittent water bodies) and marsh (Table 1).

We use the term “swamp” for wetlands with dominating saturated

soil conditions. Marshes represent “drier” wetland categories. We

recognize floodouts (permanently flooded alluvial deposits) as peat-

forming swamps. Four of our seven wetland categories accumulate

in situ produced peat (mangrove, swamp, fen and riverine/lacustrine).

Open water bodies, intermittent water bodies and floodplains do not

accumulate organic matter, whereas some subcategories of marshes

can accumulate organic matter (although not forming peat).

Drawing on the methods presented in Gumbricht (2015), we

develop a knowledge-based (see Kelly et al. (2013) for knowledge-

based and expert systems), top-down approach using expert rules

that offer comparable data among countries in a transparent and

consistent manner. The expert rules rely on three key properties of

wetland development: (1) interannual water input exceeds the atmo-

spheric water demand; (2) annually/seasonally wet or inundated soils

(phenology); and (3) a geomorphology that supports water accumula-

tion and wetland development (see summary in Table 2).

2.1 | Interannual water balance—Wetland
Topographic Convergence Indices (wTCI)

These indices are modified versions of the well-known Topographic

Convergence/Wetness Index (TCI) which originally uses upslope con-

tributing areas and local slope to determine an index of soil moisture

for each point (Beven & Kirkby, 1979). For tropical regions, Gum-

bricht (2015) adopted several modifications (see Supporting Informa-

tion for details). We applied Gumbricht (2015)’s distributed

TABLE 1 Wetland categories considered in this research

Category Geomorphology Moisture conditions Vegetation and soil conditions

Open water Lakes and permanent rivers Open water surface –

Mangrove In close proximity to coast or estuaries. Permanently wet, but with tidal

variations in water levels.

Dominated by different mangrove species;

peat formation, but with limited depth.

Swamps

(incl. bogs)

Usually bound to valleys

and plains; planar surfaces.

Wet all year around, but not

necessarily inundated.

Usually tree covered. Peat domes with peat

depths up to 45 m; otherwise with more

limited peat depths.

Fens In valleys or lower slope positions. Mainly fed by ground water,

and thus a stable water supply.

Often nutrient-rich and with dense

vegetation; peat forming.

Riverine

and

lacustrine

Aligned with the adjacent water body. Permanently wet. Varying vegetation, not seldom

with zonation reflecting proximity

to water source;

peat forming.

Floodplains

(floodouts)

Floodouts: On alluvial deposits. Fed by permanent rivers, large variations in

water levels but never drying out.

Forested or nonforested; grasses, rushes

and sedges; peat forming. Peat forming.

Floodplains: On alluvial

deposits or in valleys

Annual flooding and drying regime

with distinct dry season.

Forested or nonforested. No peat formation.

Marshes General marshes: in valleys and plains,

coastal marshes, salt marshes, savannah

and prairie marshes, etc.

No distinct intra-annual wetness cycle,

permanently moist but not necessarily

water-saturated soils.

Usually not forested; grasses, rushes

and sedges, but also herbs and bushes;

no peat formation, but organic matter

accumulation can occur, mixed with

minerogenic sediments.

Wetlands in arid climate: formed in

channel valleys and over alluvial deposits.

With a pronounced seasonality in

soil moisture regime usually

determined by lateral flow components.

Can be regarded as an intermediate

category between floodplains/floodouts

and marshes, restricted to arid climate.

Organic matter accumulation can occur,

mixed with minerogenic sediments.

Wet meadows: transition zones between

wetlands and surrounding drylands,

sometimes on open slopes.

Varying water source dependent

on hydrological position

and landscape geomorphology.

Usually dominated by grasslands, woody

vegetation if the soil moisture

regime allows. No or little organic

matter accumulation.
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hydrological model to simulate surface run-off, groundwater flow and

flooding volumes. The model calculates vertical water balance in each

time step (month) and routes surplus water over a DEM while allow-

ing evapotranspiration adjusted by topographic conditions up to the

reference evapotranspiration. Flow is separated into ground water

and surface flow. A separate routine is used for estimating flood vol-

umes. The model was calibrated against a compiled data set of global

statistical run-off data. The estimated flow components are used for

deriving both a general wetland TCI (which we call wTCI, Figure 1a),

as well as specific versions of wTCI used for distinguishing different

wetland categories. Only areas for which the hydrological model esti-

mate annual humid conditions (total water inflow exceeding reference

evapotranspiration) are open for wetland development. The specific

wTCI versions eliminate different flow components which help distin-

guish wetland categories based on water sources (Table 2).

2.2 | Soil wetness phenology—Transformed
Wetness Index (TWI)

Transformed Wetness Index is an algorithm developed to estimate

surface soil moisture content from optical satellite imagery (Gum-

bricht, 2015, 2016). At its core, TWI is a nonlinear normalized

difference index defined by soil brightness and open water optimized

for capturing variations in soil moisture, and calibrated against data

available from the International Soil Moisture Network (ISMN; Och-

sner et al., 2013). We used TWI for estimating intra-annual varia-

tions (phenology) of soil surface wetness based on annual time

series of MODIS optical images (see Gumbricht, 2016 for details).

Apart from the mean soil moisture content (Figure 1b), the soil mois-

ture phenology was used to determine periods of inundation and

water saturation, as well as lengths of periods with soil water con-

tent above/below given thresholds. The TWI phenology was subse-

quently used for identifying different wetland categories, ranging

from permanent water bodies that require complete annual inunda-

tion, to marshes that require seasonal wet soil conditions but no

annual inundation (Table 1).

2.3 | Hydro-geomorphological maps and indices

Geomorphological data can assist in both mapping wetlands and inter-

preting wetland attributes, including wetland class and depth. One

problem with geomorphological data is that landforms are usually

defined for local or regional conditions, including lithological and vege-

tation classes (e.g., Ballantine et al. 2005). To avoid this' we mapped

TABLE 2 Summary of the methods used to produce indices applied in the expert rule classification of tropical wetlands and peatlands. The
rules are given as generalized semantic statements and are not exhaustive. The restrictions for hydrological terrain relief are given in Table S1.
In the table, riverine also includes lacustrine, floodplains also include floodouts, and refET is short for reference evapotranspiration. Mangroves
and forested peat domes must have at least 25% tree cover (derived from MODIS product MOD44B). Forested peat domes is a subcategory
of swamps

Index Input data Method Generalized expert rule application

Interannual

water balance

Precipitation

and refET;

DEM (SRTM) for

flow routing

Distributed hydrological model

including flood module;

modified versions of the

Topographic

Convergence/Wetness Index

All wetlands except mangrove: constrained to cells where

total annual inflow exceeds refET

Forested peat domes: dominated by precipitation that

must exceed refET

Riverine and floodplain: sourced by flood water

Fens: bound to groundwater discharge areas

Swamps: bound to wetter sites

Intra-annual soil

wetness phenology

MODIS satellite

data (MCD43A4)

Estimation of soil wetness using

the Transformed Wetness

Index; time-series smoothing

and phenological characterization

Open water: permanently inundated

Mangrove: permanently wet, but allowing for tidal variation

Forested peat domes: wet periods dominating,

but allowing drier periods

Riverine: annual inundation with otherwise wet conditions

Floodplain: annual soil wetness variation, including

inundation

Swamps: permanent wet soils, but not necessarily

inundated

Marshes: wet periods dominating, but allowing

drier periods (subclasses constrained differently)

Hydro-geomorphological

characterization

DEM (SRTM)

supplemented

with surface

flow estimates

from the

distributed

hydrological model

Multiscale determination of landform

elements; estimation of hydrological

terrain relief, slope and curvatures;

proximity analysis

Mangrove: within 5 km from sea or estuary at maximum

45 m above sea level, neither channel nor peak

Forested peat domes: neither channel nor peak/ridge

Riverine: juxtaposition adjacent to water source in

plain or valley

Floodplains: restricted to plain or U-shaped valley

Fens: restricted to lower slopes or valleys

Swamps: only restricted by terrain relief (see Table S1)

Marshes: restricted to plains, U-shaped valleys or

lower slopes
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general landscape geomorphological elements (i.e. plains, valleys,

slopes, ridges) using topographic data as suggested by Weiss (2001).

We produced a geomorphological map (Figure 1c) using multiscaled

Topographic Position Indices (TPIs; ibid) and a more hydro-geomor-

phological version using multiscale profile curvatures (Wood, 1996).

Both maps include the classes suggested by Weiss (2001) supple-

mented with hydrological features produced by Gumbricht’s (2015)

hydrological model. Additionally, we produced three maps on hydro-

logical terrain relief, defined as the drop in elevation compared to the

nearest drainage point (river, stream, sea; Table S1):

1. Peat dome terrain relieves were wetlands constrained to humid

climates that were drained by permanent rivers (identified from

the hydrological model). These rivers were used as the reference

lowest point, to assign the maximum depth of the organic layer

in the peat domes (i.e. drop in elevation between the highest

peat dome point and the riverbed elevation)

2. Plain and open slope terrain relieves were wetlands drained by river

channels. These channels were used both for identifying potential

flood plains and for assigning the maximum depth of riverine/lacus-

trine wetlands, floodplains, floodouts, swamps and marshes.

F IGURE 1 (a) Wetland Topographic Convergence Index (wTCI) defined from local vertical water balance, upstream flow accumulation and
estimated flood volumes, combined with local topography. wTCI is arbitrarily scaled between 1 and 100 with higher values denoting a wetter
surface. Only areas where water input exceeds potential evapotranspiration have values assigned, and the rest are set to zero. (b) Average
Transformed Wetness Index (TWI) for year 2011, expressed as the ratio of water volume over total volume, converted to per cent. Assuming a
soil porosity of 50%, a TWI of 50 represents a fully water-saturated soil, values above 50 suggest inundation and values of 100 suggest deep
open water. (c) Global tropical and subtropical landform map with thirteen geomorphological categories derived from topographic data
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3. Valley-bound terrain relieves were wetlands drained by smaller

streams. It included fens and marshes’ wetland categories. These

streams were used as the reference lowest point, to assign the

maximum depth for these wetland categories.

2.4 | Data sets

2.4.1 | Model data sets

We used MODIS (MCD43A4) images taken at 16-day intervals for map-

ping the duration of wet and inundated soil conditions for 2011. Data

from adjacent dates in 2010 and 2012 were used to bridge data gaps at

the beginning and end of 2011. For the equatorial region (≤10° latitude),

the full time series of 2010 and 2012 was used to fill in cloud-related

gaps, whereas for other regions we focused on 2011. We used monthly

mean precipitation for 1950–2000 from the WorldClim global data set

(Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) and monthly evapo-

transpiration from New, Lister, Hulme, and Makin (2002). For topogra-

phy, we used a hydrologically corrected version of the Shuttle Radar

Topography Mission (SRTM) at 250 m produced by CIAT (International

Center for Tropical Agriculture), with an estimated relative error of 1.6–

3.3 m (Brown, Sarabandi, & Pierce, 2005). Please see the “caveats,

errors and improvements” section, for known errors and caveats in

these data sets.

2.4.2 | Wetland comparative data sets

We selected five spatial data sets offering global wetland area esti-

mates, to compare our results.

1. The Global Land Cover GLC250-2010, an aggregation of the Glo-

beLand30 (National Geomatics Center of China, 2014). The origi-

nal map is a global land cover map at 30-m resolution based on

Landsat TM, ETM and the HJ-1 Chinese satellite for Environmen-

tal Disaster Alleviation, for �1 year around year 2010. Data used

here were aggregated to 250 m.

2. The Global Lakes and Wetlands Database GLWD-3 by Lehner

and D€oll (2004), a global 30-s resolution raster map that was pro-

duced by combining existing maps with other data sources on

water bodies and wetlands.

3. Matthews and Fung (1987), the first global database of wetlands

at 1° resolution is a digitization of traditional maps based on field

and aerial surveys.

4. The Global Freshwater Wetlands by Stillwell-Soller et al. (1995),

a 1° resolution wetland data set assembled from two data sets:

Aselmann and Crutzen’s (1989) wetland cover data comple-

mented with Alaskan wetland maps (fens and bogs).

5. The Global Hydrographic Data (GgHydro) by Cogley (2003), a 1°

resolution global data set containing hydrological and terrain

properties including wetlands.

None of these maps represent, however, ground truthing. They

are, instead, area estimates derived from remote sensing and exter-

nal data sources.

2.4.3 | Peatland profile data set

We compiled a data set of geo-positioned tropical peat profiles with

information on peat depth and organic matter content, adhering to

our definition of peat (n = 275). Points were taken from the litera-

ture (N. Herold, unpublished data), and from shared field work data

(E. Householder, unpublished data; Fig. S1).

2.5 | Produced maps

2.5.1 | Wetland and peatland maps

The general expert rules assigned for distinguishing the wetland cat-

egories adopted in the study are summarized in Table 2. Swamps

and marshes each include distinct subcategories, expressed through

separate rules in the expert systems. Floodouts are included in the

swamp category but methodologically distinguished using a combina-

tion of swamp and floodplain rules. The peatland map is derived by

separating out the peat-forming wetlands (Table 2). Peat is here

defined as any soil having at least 30 cm of decomposed or semide-

composed organic material with at least 50% of organic matter. This

corresponds to 29% of carbon content using 1.72 as the transforma-

tion factor. Peatlands refer to landscapes with peat deposits without

specific thresholds for minimum continuous peat area, nor for mini-

mum depths (further than the 30 cm threshold selected for the defi-

nition of peat).

2.5.2 | Soil depth maps

To estimate organic layer depth, we assumed that the terrain relief

maps represent the metric distance from the ground surface of wet-

lands to their mineral bedding. For each wetland category, two depth

restrictions were defined: an initial dichotomic restriction on depth

occurrence depending on peat formation or not, and a second depth

assigning the maximum depth of organic matter using reported val-

ues in literature (Table S1). In effect, this means that:

1. We assume that coastal peat domes have their basal level at sea

level and that inland peat domes have their basal level coinciding

with the levels of adjacent rivers. This is an oversimplification,

but data on the depth and mineral bedding of peat domes in

South-East Asia support this assumption (A. Hoijer, unpublished

data).

2. Extended alluvial deposits with floodouts, including many of the

largest pantropical wetlands (i.e. Pantanal in South America, the

Sudd, the Niger Inland Delta and the Okavango in Africa, the

Indo-Ganges plateau), have surfaces almost perfectly aligned with

the geoid. These wetlands can then be assumed to have a near

planar (geoid parallel) mineral bedding, with a high degree of cer-

tainty (Gumbricht et al., 2002).

3. Valley-bound wetlands and wetlands on open slopes can have

highly varying topographic bedding conditions. Anticipating that

these wetlands initially developed at level with the feeding/drain-

ing channel or stream, we assume that the mineral bedding is
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near the level of the adjacent channel or open water, with depth

following the general slope profile curvature.

Depths are prompted by biases in the SRTM DEM data (see the

“caveat, errors and improvement” section).

2.6 | Validation processes

2.6.1 | Comparison of wetlands and peatlands

We cross-validated our wetland area estimates against the five glo-

bal wetland area data sets, at the country level (positional errors dis-

courage direct overlay for cross-validation). For peatlands, we

compared our peatland area, depth and volume, with Page et al.

(2011) at the country level (58 common countries; Table S2). We

recognize that several recently researched and quantified large peat-

land complexes are missing in Page et al. (2011)’s data set. We thus

also compare our results with more recent studies on rainforest

peatlands in the Amazon and Congo basins, and for nonrainforest

histosols in French Guiana.

2.6.2 | Ground validation of peatlands

We overlaid the compiled ground data set of peatland profiles to

our map and also created a one-pixel buffer (232 m) for each point,

allowing for minor positional inaccuracies. Also, as a visual validation,

we contrasted our peatland map against six major peat deposits

reported by Lawson et al. (2015; Fig. S2).

2.7 | Caveats, errors and improvements

Our approach suffers from errors in the source data of key variables

used in our model: elevation, soil moisture (phenology) and climate.

The SRTM digital elevation data (DEM) are erroneous over dense

canopies (artificially heighten ground elevation), and over small water

bodies (artificially lowered ground elevation). The general tendency

of these errors is an overestimation of the soil depth of forested

swamps. Comparing our depth estimates with ground profiles, we

consequently found a bias in our data that mainly affected our deep-

est pixels, which showed twofold depth values compared with the

profiles’ data (see Fig. S3). To account for this bias, we re-estimated

countries’ peat volumes by halving the established maximum depth

thresholds used to parameterize the different wetland types

(Table S1). We offer minimum–maximum volumes accordingly. More

recent global DEMs including estimates on uncertainties could be

used for reducing this threshold effects.

Another source of error lies in the adoption of optical data for

time-series analysis and estimation of soil moisture phenology. Opti-

cal sensors cannot capture ground conditions under cloud cover, and

thus tend to miss floods and inundated soil conditions during wet

seasons with persistent cloud cover. Our results thus tend to under-

estimate floodplains, classifying them as marshes, or escaping detec-

tion altogether. Contrarily, we overestimate the extent of wetlands

and peatlands as a result of a bias in the Transformed Wetness

Index (TWI) that exaggerates the soil moisture content in regions

where the canopy casts shadows. TWI includes an indirect removal

of the vegetation signal, but dark soils artificially increase soil mois-

ture estimates. This effect is particularly pronounced in temperate

needleleaf forests (Gumbricht, 2016). This problem could be over-

come by either adjusting TWI for canopy cover, or calibrating the

TWI using microwave data. On the other hand, dense stands of wet-

land grasses and sedges (i.e. reeds and papyrus) cause TWI to under-

estimate the actual soil moisture conditions. This results in an

underestimation of wetland and peatland areas in parts of the Oka-

vango Delta, as well as in the many papyrus- and reed-dominated

wetlands along streams and smaller rivers (e.g. Uganda). Other flood-

out wetlands, that form peat, are thus also omitted or underesti-

mated (i.e. the Sudd in Southern Sudan and the Niger Inland Delta in

Mali).

The largest model problem stems from errors in the climate data.

Thus, precipitation records over large parts of the tropics, including

the Amazon and Congo basins, are inaccurate. Our hydrological

model was calibrated against a global set of run-off stations, and any

global bias in the climate data should have been overcome. How-

ever, we could achieve more accurate run-off predictions using

regional calibration settings, by identifying better climate records for

different regions or both. Moreover, our study is based on a combi-

nation of long-term statistical climate data, but a shorter period of

satellite observations for soil wetness analyses. Our soil moisture

(phenology) results thus reflect the situation in and around 2011

(2010–2012 for latitudes below 10°). These years do not represent

climatic “normality” with 2010/2012 being among the driest/wettest

years on record for the tropical region and with 2011 developing

strong La Ni~na that led to excess precipitation and flooding in parts

of the tropics (Espinoza et al., 2013; Marengo et al., 2013; Torti,

2012). Excess rainfall in the Amazon during 2011 may have affected

TWI and have led to overestimated soil moisture contents, which

the model is more prone to assign to peat-forming wetlands. As the

access and accumulation of both climate data and satellite observa-

tion increase, the model could be adopted for multiyear studies, or

even for predicting changes in wetland and peatland area in future

scenarios of climate change (see Supporting Information for further

suggestions on model improvement).

We lack sufficient data to quantify the errors or to estimate any

ranges of statistical accuracies from the accumulated errors and the

error propagation. The results presented thus represent a single glo-

bal model parameterization, with two different depth estimates used

for volumetric calculations.

3 | RESULTS

3.1 | Wetlands

Our method estimates the pantropical wetlands cover 4.7 Mkm2

(5.3 Mkm2 including open water; Figure 2), which is in the high

range of other wetland extents for the same study area (Table 3).
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Marshes were our most abundant wetland class (59%) followed by

swamps (29% including floodouts) and floodplains (5%). Mangroves

are estimated to make up 4% of the total wetland area with ca.

180,000 km2. Our estimates of wetland area are close to the

GLWD data set (4.8 Mkm2; Lehner & D€oll, 2004), and much

larger than the GLC250-2010 (1.8 km2; Table 3). All wetland data

sets agreed on four top contributors (i.e. countries that add up to

80% of the total tropical wetland area): Brazil, Indonesia, Argen-

tina and the tropical/subtropical United States (Figure 3). Five of

six data sets also agreed on the importance of China, Australia

F IGURE 2 Distribution of our wetland
classes in the tropics and subtropics
(232 m). Colours represent different
wetland types. In red are wetlands that
form peat
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and DRC. Four of six agreed on the importance of Peru, Bolivia,

Venezuela and Paraguay. From a continental perspective, all data

sets, except Cogley’s GgHydro, agreed that America was the lar-

gest contributor to wetland areas followed by Asia, except Mat-

thews and Fung (1987) that had Africa as the second largest

contributor (Fig. S4).

3.2 | Peatlands

Our model estimates unprecedented areas of pantropical peatlands:

1.7 Mkm2, an associated peat volume of 7,268 (6,076–7,368) km3

and a mean depth of 3.6–4.3 m (Table 4, Figure 4). Some of these

peatlands are yet underreported, and many of them are outside Asia

(Figure 5). Ground validation showed good agreement with 65% of

the soil profiles overlaying peat pixels in our maps. Indonesia, where

more complete data exist, showed an agreement of 74%. Compared

with recent reports on peatland areas, our spatial estimates closely

match the peatland areas in the Pastaza–Mara~n�on (Peruvian Amazon,

L€ahteenoja et al., 2012; Draper et al., 2014; 40,838 vs. 35,600 km2

our estimates vs. Draper et al., 2014) and the Cuvette Centrale

(Congo Basin, Dargie et al., 2017; 125,440 vs. 145,500 km2;

Table 5). Our depth and volume estimates are, however, substan-

tially higher for both sites (Table 5). For the coastal region of the

French Guiana our estimated area (2,016 km2, excluding mangrove)

is close to early estimates of peatland extend reported for the region

(i.e. 1,620–1,720 km2), but higher than the latest reports (Cubizolle

et al., 2013).

For the same study area previously reported by Page et al.

(2011), our estimates are ca. threefold tropical peat areas (1.5 vs.

0.44 Mkm2) and volumes (6,991 vs. 1,758 km3; Table 4). Among the

top contributors to pantropical peat area and volume (understood as

countries adding up to 80% of the tropical peatland area) are, in this

order: Brazil (18%, 20%), Indonesia (13% and 18%), DRC (7%, 10%),

China (5%, 3%), Colombia (4%, 5%), Peru (4%, 6%), United States

(4%, 2%), Bangladesh (3%, 3%), India (3%, 2%) or Venezuela (3%,

4%), among others (Figs S5–S8).

In terms of peatland area, continental areas show twofold

increases in Asia and three- to fourfold increases in South America

(Table 4), while the recent reports by Dargie et al.(2017) put our

estimates at approximately 1.25 times the current estimates for

Africa. South America (with a tropical area contribution of 46%) and

not Asia (36%) holds the largest area of tropical peatland according

to our estimates (Table 4). Brazil (312,250 km2) and not Indonesia

(225,420 km2) leads the contribution to tropical peatland area

(Table 6). A comparison of top contributors highlights differences

between our data and existing estimates: (1) unaccounted countries

(i.e. Argentina and the United States are top contributors in our

study but unaccounted in Page’s); (2) previously not recognized top

contributors (i.e. India, Bangladesh or Viet Nam); (3) countries in our

study with substantially higher estimates (i.e. Colombia, China and

Venezuela) compared with existing records; and (4) countries for

which we estimate large peat deposits that were previously unrecog-

nized (i.e. Zambia, Sudan, Uganda, Guyana and Panama; Figs S5 and

S6). Peatland volumes: our results indicate a general increase in trop-

ical peat volume on all the continents (Table 4). According to our

estimates, South America (42%) holds the largest peat volume fol-

lowed by Asia (39%; Table 4), with Brazil (1,489 km3) holding more

volume than Indonesia (1,388 km3; Table 6). Top contributors with

underreported contribution include Brazil, Peru, Venezuela, Colom-

bia, Argentina, Colombia, China, India and Bangladesh (Figs S6 and

S7). Peatland depths: Depth plays a role in the volume increases out-

side Asia. Thus, while our Asian area estimates more than double

Page et al.’s, they barely double their volume (Table 4). Along this

line, our estimates for Indonesia and Malaysia (area, volume, depths)

are very close to those previously reported (Table 6). Asian differ-

ences then relate to some unaccounted deep deposits such as those

in Indonesian Papua, but mainly to extended but less deep deposits

in the river deltas of Bangladesh, Viet Nam, Cambodia, Myanmar,

Thailand or Brunei (Fig. S8). Five of the fifteen countries with the

deepest peat deposits in our data are in South America (Ecuador,

Suriname, Peru, Brazil, Venezuela), and five in Africa (Congo, DRC,

Nigeria, Ivory Coast, Equatorial Guinea; Fig. S8).

If we select standard values for bulk density (0.09 g/cm3) and for

carbon content (56%), as in Page et al. (2011), we would report 350

GtC, more than three times current estimates, including recent dis-

coveries.

TABLE 3 Area estimates of tropical wetlands for our study area
and global extent, for our data set and six other data sets. Global
estimates are extracted from Melton et al. (2013)

Wetland classes Area for the tropics and subtropics km2

Open water 604,670

Mangroves 179,795 (4%)

Swamps 1,003,719 (21%)

Floodout swamp 366,314 (8%)

Fens 142,860 (3%)

Riverine 3,842 (0.1%)

Floodplain 247,448 (5%)

Marshes 1,665,660 (35%)

Marshes—Dryland/wetland 275,273 (6%)

Marshes—Wet meadows 846,004 (18%)

Total Wetlandsa 4,730,921

Other wetland data sets

Area for the
tropics and
subtropics Mkm2

Global
areaa Mkm2

This study 4.7

GLWD-3 Lehner and D€oll (2004) 4.8 9.2

Stillwell-Soller et al. (1995) 3.4 4.8

GgHydro Cogley (2003) 2.8 4.3

Matthews and Fung (1987) 2.2 5.3

GLC250-2010 National

Geomatics Center

of China (2014)

1.8 2.6

Aselmann and Crutzen (1989) 5.7

aTotal wetland areas do not include open water.
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4 | DISCUSSION

A fundamental problem when mapping wetlands and peatlands is

the lack of standardized criteria by which wetlands and peatlands

are defined and identified, and the lack of classification systems that

take into account specific hydrological conditions and respective

plant communities (Junk et al., 2011, 2014). Our approach considers

some of these constraints by developing a hybrid wetland mapping

method that combines topographic data and hydrological modelling

with time-series data on soil moisture retrieved from optical satellite

imagery. This approach allows to map pantropical wetland and peat-

land extents at an unprecedented scale of 232 m using a single

method and a single parameterization. The method is deterministic

in its core and is based on expert rules which can be easily adjusted

by experts, for regional conditions. The method is, however, affected

by errors in the source data and model, for which we have

F IGURE 3 Country contribution to tropical wetland area by order of area importance, from this study and from five other wetland data
sets: The GLC250-2010 (National Geomatics Center of China, 2014); the Global Lakes and Wetlands Database by Lehner and D€oll (2004);
Matthews and Fung (1987); the regional Freshwater Wetlands by Stillwell-Soller et al. (1995); the GgHydro by Cogley (2003). Comparisons to
independent data sets were performed on spatial subsets consistent with this study. Please note that y-axes have different scales
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suggested different solutions (see the “caveats, errors, improve-

ments” section).

While the extent and volume of wetlands and peatlands remain

unknown due to unavailable ground data against which to validate

existing estimates, our modelled estimates showed good agreement

with our collected field points. Our hybrid approach suggests, how-

ever, comparatively larger wetland and peatland extents and volumes

than currently reported in other data sets. This is partly because our

approach avoids omissions including undetected inundation patterns

under dense canopy covers (Estupinan-Suarez, Florez-Ayala, Qui-

nones, Pacheco, & Santos, 2015; Hess et al., 2015). These last

authors report 25% of wetland area omissions in the Amazon when

using optical remote sensing alone over areas with dense tree cover.

Our approach also reduces commission errors compared with remote

sensing or hydrological modelling alone, by including topographic

data, which Bwangoy, Hansen, Roy, De Grandi, and Justice (2010)

reported improved wetland mapping. Moreover, we do not exclude

wetlands/peatlands under human use and paddy rice that fulfils the

wetland thresholds would be included. Our approach also identifies

seasonally inundated wetlands besides permanently inundated areas,

and we detect soil wetness and topographic conditions that favour

waterlogging in the absence of flooding (due to rain-fed or ground-

water-fed sources). As expected, our finer spatial scale (232 m) cap-

tures smaller wetland features that add up to significantly larger

areas than previously reported, as it was the case for the Amazon

(Hess, Melack, & Simonetti, 1990; Junk et al., 2013) and for the

Congo Basin (Bwangoy, Hansen, Roy, De Grandi, & Justice, 2010).

Our results underestimate, however, wetland and peatland areas

in some regions, and our model misclassifies some particular wetland

categories (floodplains, riverine). Most notably, our model and

parameterization do not capture mountainous wetlands and peat-

lands, including the Paramos and Puna in the Andes (Benavides,

2014; Rom�an-Cuesta et al., 2011; Ruthsatz, 2012; Salvador, Mon-

erris, & Rochefort, 2014), Campos de Altitude in Brazil (Behling,

2007) and Tepuis (Zinck & Garc�ıa, 2011). We also miss drained and

degraded peat domes as their surfaces have dried out (see the case

of the Sumatran peats in the discussion). Floodplains and riverine

wetlands suffer from classification biases, the first due to persistent

cloud cover that might miss flooding episodes and tends to recate-

gorize floodplains as marshes and the second due to a scale problem

with smaller and narrower wetlands escaping detection (Kaptue-

Tchuente, Roujean, & De Jong, 2011). Solving these problems would

require a stratified model parameterization for mountainous regions,

microwave observations to assess soil moisture under clouds, for

floodplains, and the adoption of higher-resolution DEM and satellite

data for narrow channels (riverine wetlands).

4.1 | Wetlands

Our wetland area estimate (4.7 Mkm2) is the closest to the GLWD-3

data (4.8 Mkm2; Lehner & D€oll, 2004), which Hess et al. (2015) also

identified as the closest data set to their Amazonian radar-based

wetland research. Multisource approaches, such as GLWD, shouldT
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therefore be preferred for wetland mapping as they better capture

wetland attributes and can yield estimates closer to those of fine-

resolution mapping (Hess et al., 2015). Our estimates are also in line

with Melton et al. (2013) who suggest that available global wetland

maps underestimate the wetland extent in the humid tropics, as sup-

ported by unmodelled but remotely sensed and atmospherically

F IGURE 4 Distribution of tropical and subtropical peatlands with black circles locating colossal peat deposits in (1) the Cuvette Centrale, in
the border between Congo and Congo-DRC; and (2) the Pastaza–Mara~n�on in Peru. The lower panels show the detailed wetland composition
and depths (m) of these peat deposits as produced by our maps. Swamps, riverine and floodout swamps are the wetlands that form peat in
these complexes
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F IGURE 5 Nonexhaustive view of underreported peat deposits identified in this study in South America (a), Asia (b) and Africa (c). Some
key peat areas in South America include the Amazon Basin (nine different sites), and (1) the Ibera Wetlands; (2) La Plata River and tributaries
(Paraguay and Paran�a), both in Argentina. Asia contains more peat than reported in river deltas, particularly in (1) Bangladesh; and (2) the
Mekong and Red rivers in Viet Nam, Irrawaddy in Myanmar/Burma, Chao Phraya in Thailand and the wetlands of the lower Mekong River in
Cambodia; and (3) Indonesian Papua. African underreported peatlands include (1) the Niger River Delta; (2) the Sudd in South Sudan; (3) the
Cuvette Centrale (recently ground-validated by Dargie et al. (2017)); (4) the Cameia wetlands in Angola; (5) the Bangweulu and other wetlands
in Zambia; and (6) the Okavango Delta in Botswana
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detected wide-spread CH4 emissions (Frankenberg et al., 2008;

Montzka et al., 2011). Regionally, our model identifies Brazil as the

major contributor to South American wetlands (800,720 km2 without

open water, and ca. 56% of the Amazon Basin area), and the major

contributor to tropical wetland area (17%), followed by a distant

Indonesia (7.7%), India (5.6%), China (5.5%), DRC (4.4%) and several

American countries (Argentina (4.3%), United States (4.2%), Colombia

(3.8%), Venezuela (3.0%), Bolivia (2.9%) and Peru (2.9%)). All the data

sets, except the GgHydro, agreed on the major role of Brazilian wet-

lands. Our wetland area estimate for Brazil is in line with GLWD,

GFW and Matthews and Fung (1987), but conservative compared

with Junk, Fernandez Piedade, Parolin, Wittmann, and Alho. (2010),

Junk et al. (2011, 2013) who offer educated guesses of ca. 1.4

Mkm2 (20% of the Brazilian territory), and up to 2 Mkm2 when small

order streams are included. Hess et al. (2015) suggest lower wetland

area estimates for the Amazon Basin: 840,000 km2 (52% in Brazil),

using radar-derived approaches. This last estimate does not include,

however, nonflooded waterlogged soils as they are not detectable

with L-band SAR radar methods.

Continentally, all databases agree that tropical and subtropical

America (including the United States) is the main contributor to

pantropical wetlands, mainly driven by South America. This relates

to the presence of vast river systems such as the Amazon, Orinoco

and Paran�a/Paraguay rivers that hold the highest discharge flows in

the world and whose flat interfluvial areas are periodically flooded

forming extended wetlands (see Junk et al., 2011). Complex wetland

types have been defined for the Amazon Basin, many of them

belonging to the floodplain category with a pulsing water level (up

to 10 m difference) and pronounced dry and wet periods (Junk

et al., 2011, 2013). The concept and definition of floodplain open up

to an interesting discussion that affects the estimates of tropical

peat. Thus, floodplains, under our definition, are wetlands fed by

river rising and associated flooding but with soils that dry out during

the dry season. Floodplains do not form peat (Table 2). The catego-

rization of Amazonian wetlands as floodplains would therefore

exclude peat formation in the Amazon. However, our model sees at

232 m of spatial resolution that many Amazonian soils are too wet

to be floodplains. Many are either wet all year around although not

necessarily flooded (i.e. rainfall-fed such as swamp bogs, or ground-

water-fed such as fens), or are river-fed with large variations in

water levels but never drying out (i.e. floodout swamps; Table 2).

Thus, our model categorizes the Brazilian Amazonian wetlands into

swamps (26%), fens (6%), riverine (oxbow lakes; 0.1%), floodout

swamps (6%), floodplains (5%) and marshes (46%), with the first four

classes forming peat (38%). Our model sees only 5% of floodplains,

against Junk, Fernandez Piedade, Parolin, Wittmann, and Alho.

(2010)’s educated guess of 35% of floodplains in central Amazonia.

On the other extreme of soil humidity are the marshes (46%), which

our model captures as areas with seasonally drying soils (Table 2).

However, marshes are a loose category in our model that occurs

TABLE 5 Comparison of the results presented in this study with more recent studies including ground data collection and/or refined spatial
mapping efforts

Area (km2)
(other study)

Area (km2)
(this study)

Volume (km3)
(other study)

Volume (km3)
(this study)

Depth (m)
(other study)

Depth (m)
(this study)

Pastaza–Mara~n�on (Draper et al., 2014) 35,600 40,838 707 257 2.0 6.3

French Guiana (nonrainforest region)

(Cubizolle et al., 2013)

975 2,016 (excl. mangrove) Not given 8.4 Not given 3.8

Congo Basin (Dargie et al., 2017) 145,500 125,440 600 915 4.2 6.9

TABLE 6 Area (km2), volume (km3) and depths (m) in Page et al. (2011) data and in this study, for the three top country contributors in
each continent based on the results of this research. Depths in Page et al. represent mean best estimates while ours represent the mean
depths from all the peat-forming wetlands (mangroves, swamps, fens, riverine wetlands and floodout swamps). Latest published peat areas in
Peru and DRC-Congo are not included in these estimates (see Table 5 for these values)

Area (km2)
Page et al. (2011)

Area (km2)
this study

Volume (km3)
Page et al. (2011)

Volume (km3)
this study

Depth (m)
Page et al. (2011)

Depth (m)
this study

Asia Indonesia 206,950 (206,950–270,630) 225,420 1,138 (1,138–1,157) 1,388 (1,089–1,396) 5.5 4.9–6.2

Malaysia 25,889 (22,490–29,649) 29,649 181 (157–182) 180 (142–181) 7.0 4.8–6.1

Papua New Guinea 10,986 (5,000–28,942) 45,018 27 (13–33) 220 (177–222) 2.5 3.9–4.9

South

America

Brazil 25,000 (15,000–55,000) 312,250 50 (3–59) 1,489 (1,218–1,512) 2.0 3.9–4.8

Colombia 5,043 (3,390–10,000) 74,950 3 (2–4) 327 (277–332) 0.5 3.7–4.4

Peru 50,000 (50,000–50,000) 74,644 88 (88–88) 449 (385–453) 1.75 5.2–6.0

Africa Congo-DRC 2,800 (400–10,000) 115,690 11 (2–13) 747 (633–754) 4 5.5–6.5

Congo 6,219 (2,900–16,177) 43,769 47 (22–50) 345 (286–346) 7.5 6.5–7.9

Nigeria 1,840 (120–7,000) 21,685 9 (1–11) 113 (97–114) 5 4.5–5.2
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when dryness is beyond floodplain thresholds and, as explained

before, the 46% area of marshes likely includes misclassified Amazo-

nian floodplains. Nor marshes nor floodplains form peat (Table 2)

and our high peat areas mainly related to the swamp categories. In

general, our peat area estimates may reflect a data bias due to the

use of year 2011 for the soil wetness index, which was an anoma-

lously wet year. Further, multitemporal data are needed to confirm

whether soil humidity in the Brazilian Amazon and elsewhere is in

average as high as detected, or year 2011 is biasing the results

towards more humidity and therefore larger areas of wetlands and

peatlands.

Several rivers such as the Nile, Zaire, Niger, Zambesi and Oka-

vango with fringing floodplains and internal deltas dominate the sce-

nario of African wetlands (Junk et al., 2013). Most of them have a

pronounced wet and dry period and are also subject to a flood pulse

(Junk et al., 2013). However, as it happened in the Amazon Basin,

hydrological and soil moisture conditions make our model reclassify

some of these floodplains as wetter peat-forming wetlands (i.e.

swamps). For the case of Congo-DRC, this reclassification probed

correct, with our model estimating 46% of hydrological peat-forming

swamps in the area of DRC’s Cuvette Centrale (ca. 100,000 km2)

versus the 145,500 km2 of swamps reported by Dargie et al. (2017)

for the entire Cuvette Centrale region (Figure 4 and Fig. S2). These

values are also in line with Vancutsem, Pekel, and Evrard (2009) who

reported 108,713 km2 of wetlands for DRC (94% forested). Our

model identifies DRC (24% of the African wetland area,

210,133 km2 and 4.4% of pantropical wetland area), South Sudan

(11%), Congo (7%), Zambia (7%), Angola (6%), Nigeria (5%) and Tan-

zania (2.6%) among the major wetland contributors in Africa. In Asia,

monsoonal climate favours the occurrence of intermittent wetlands

and together with varied local climatic conditions leads to a large

diversity of wetland types and extents (Junk et al., 2013). Large SE

Asian rivers such as the Mekong, Ganges, Brahmaputra, Irrawaddy,

Indus are accompanied by extended fringing floodplains and form

large deltas. Indonesia (22% of Asian wetlands and 7.7% of pantropi-

cal wetlands), India (15%), tropical China (15%), tropical Australia

(10%), Bangladesh (5%), Pakistan (5%) and Papua New Guinea (4%)

are among our largest wetland contributors in Asia.

4.2 | Peatlands

Our estimate of pantropical peatland areas and volumes are three-

fold the statistical data compiled by Page et al. (2011) at country

level. These authors did not include, however, some of the large

peatland complexes recently researched outside Asia, which our data

showed good agreement with: Cuvette Centrale Congolaise (Bwan-

goy, Hansen, Roy, De Grandi, & Justice, 2010; Campbell, 2005; Dar-

gie et al., 2017; Evrard, 1968) and the Pastaza–Mara~non (Draper

et al., 2014; L€ahteenoja et al., 2012). As it was the case of wetlands,

the lack of a standardized definition of peatland also hampers the

comparison of peat estimates (Biancalani & Avagyan, 2014). In our

case, our peat definition is an expert assumption and more fieldwork

is needed to validate whether our maps correctly locate peat and

whether this peat responds to the way we define it (≥50% organic

content and ≥30 cm deep). Some peat overestimation may then be

expected because our model does not account for disturbances such

as fire or river dynamics (i.e. erosion), nor does it consider soil lithol-

ogy other than through soil wetness responses, and some areas with

hydrological good conditions may not store peat (L€ahteenoja et al.,

2012). However, our data showed good validation results (65%) and

good visual agreement with Lawson et al. (2015)’s six largest tropical

peat reservoirs (Fig. S1). Therefore, and while further ground valida-

tion is needed, we sustain that our large peat estimates are realistic

and far much more peat exists in the tropics than previously esti-

mated.

Our peatland data highlight current misconceptions in peat area

estimates, distributions and continental contributions, which cur-

rently hold South-East Asia as the major tropical contributor (Page

et al., 2011). As mentioned by other researchers, African and South

American peats remain poorly studied due to logistic (i.e. accessibil-

ity) and methodological constraints (i.e. cloud persistence for remote

sensing, or lack of climate data for hydrological modeling; Schulman

& Ruokolainen, 1999; Ruokolainen, Schulman, & Tuomisto, 2001;

L€ahteenoja, Ruokolainen, Schulman, & Oinonen, 2009; Householder,

Janovec, Tobler, Page, & L€ahteenoja, 2012; Draper et al., 2014; Law-

son et al., 2015; Dargie et al., 2017). In our model, South American

peat areas overpass the Asian contribution, with Brazil hosting larger

areas (18% of pantropical peat area) and volumes (20% of pantropi-

cal peat volume) than Indonesia (13% and 18%), which only but mir-

rors its role as the largest wetland country in the tropics. This new

ranking is likely an underestimation due to the omission of extended

montane peats along the Latin American mountain ranges. South-

East Asian peatlands will likely remain as the most extensive and

deepest tropical peats (L€ahteenoja, Flores, & Nelson, 2013; Page

et al., 2011) as Latin American peat depths are thinner and vast con-

tinuous extents of peat are rarer (L€ahteenoja et al., 2013). Thus, with

some exceptions, the Brazilian peat would relate instead to smaller

and shallower peat deposits that add up to large extensions and vol-

umes.

African peatlands are the least known (Cris, Buckmaster, Bain, &

Bonn, 2014; Joosten, Tapio-Bistrom, & Tol, 2012). However, due to

climatic and topographic contexts, our results suggest that this conti-

nent hosts the lowest peat areas (257,038 km2) and volumes

(1,376 km3) and suffers from less underestimation than the American

continent. The equatorial Congo Basin constitutes the second largest

river basin on Earth with 3,747,320 km2 of catchment area (Runge,

2008). Its central section counts on vast stretches of swamp forest

(Bwangoy et al., 2010) with reported peat accumulations of up to 7

m. This area is known as the ‘Cuvette Centrale Congolaise’ (Camp-

bell, 2005; Dargie et al. 2017; Evrard, 1968). Besides the large wet-

land and peatland areas of the Cuvette Centrale (Campbell, 2005;

Dargie et al., 2017; Evrard, 1968; Runge, 2008), extensive peats

occur associated with inland deltas such as the Okavango Delta and

the Sudd in Botswana and South Sudan, respectively (McCarthy,

1993). Coastal peat deposits, such as those on the Indian Ocean sea-

board (i.e. the Mfabeni peat in South Africa) have also reported up
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to 12 m of peat (Grundling, Van den Berg, & Price, 2013). For Asia,

and compared with the Indonesian peatland map (Wahyunto,

Nugroho, & Sulaeman, 2014), our results for swamps (excluding

mangroves and floodouts) underestimate the peatlands in Sumatra

(46,000 km2 compared to 56,000 km2) due to drained peatland that

our model does not capture, but overestimate the extents for Papua

(51,000 km2 compared with 39,000 km2).

Besides these known peat areas, our model suggests several

underreported peatland hotspots that would require further research

and field validation (Figure 5): the Amazon Basin, Argentina, Niger,

Angola, Bangladesh and several river deltas in South-East Asia. The

Amazon Basin plays an important role in the observed continental

shift on peatland weights. Our model estimates a peatland area and

volume of ca. 544,910 km2 and ca. 2,600 km3, implying that 38% of

the Amazonian wetland area forms peat. Brazil, Peru, Colombia and

Venezuela appear as the major contributors. Amazonia harbours a

variety of ecosystems that can store organic matter due to waterlog-

ging conditions (i.e. forested and grassy swamps in lowland savannas;

swampy palm forests and mixed swamp forests in the rainforest;

waterlogged vegetation on tepuis; Junk et al., 2011). However, peat

formation does not always occur and its presence depends on at

least six factors (L€ahteenoja et al., 2013): rainfall and hydrology (i.e.

amount of rain, increased frequency of droughts), tectonic condi-

tions, topography, minerogenic subsoil types, river dynamics and fre-

quency of fires.

Educated guesses of peatland area in the Amazon range

between 150,000 km2 (Schulman & Ruokolainen, 1999; Ruoko-

lainen et al., 2001; mainly swamps), 200,000 km2 of (semi)perma-

nently flooded woody vegetation (Hess et al., 2015) and

488,374 km2 of major interfluvial wetlands affected by uncertain

but periodically floodable or waterlogged conditions (Junk et al.,

2011), which could potentially accumulate peat. Our peat esti-

mates are higher than these educated guesses due to peat pres-

ence in new Amazonian areas (Figure 6a). Junk et al. (2011)

identified seven major Amazonian regions that could potentially

form peat (Figure 6b, figure 5 in Junk et al. (2011); see Supporting

Information for further details). Field efforts have confirmed peat

presence in region 1, in the middle Rio Negro Basin (L€ahteenoja

et al., 2013) and in the upper Rio Negro Basin (Bardy, Derenne,

Allard, Benedetti, & Fritsch 2011; Do Nascimiento et al., 2004;

Dubroeucq & Volkoff, 1998; Horbe, Horbe, & Suguio, 2004; Mon-

tes et al., 2011). Extended peat deposits have been described in

region 5, in the north-western Amazonian Pastaza–Mara~n�on river

basins (L€ahteenoja et al., 2009; Draper et al., 2014; up to 9 m).

Smaller deposits exist in region 6 (Figure 6b), in the south-west

Amazonian Madre de Dios river Basin (Householder, Janovec,

Tobler, Page, & L€ahteenoja, 2012; up to 9 m). Our model pre-

dicts more Amazonian peat in already identified peat-forming areas

such as the Rio Negro Basin (regions 1, 2; Figure 6a); and new

peat hotspots in: (1) the area between the Purus and Madeira

rivers (region 8); (2) the Island of Marajo (region 9); (3) some

Ecuadorian large deposits in the border with Peru, between the

upper Napo and the Putumayo rivers (region 4); and (4) locally

extended deposits of peat in varzeas in west-central Amazonia

(i.e. region 7 and part of region 3; Figure 6a). From these

Amazonian hotspots, those on the Rio Negro Basin are contested

(F. Wittmann and A. Quesada, personal communication) and would

require further fieldwork. Soil drying, the presence of fire and low

vegetation productivity due to poor nutrients in blackwater rivers

are arguments exposed against our extended peat areas in the Rio

Negro Basin (F. Wittmann, personal communication).

Our model estimates larger areas and volumes of wetlands and

peatlands compared with hitherto published global estimates.

Despite that some regions have overestimated wetland and peatland

areas, we believe that our area estimates are rather an underestima-

tion for both wetlands and peatlands, whereas the total peatland

volume is more likely an overestimation. The massive scale, isolation

and unavailability of most Latin American and African peatlands have

F IGURE 6 Comparison of our Amazonian peat hotspots (a) versus hydromorphic habitats in Figure 5 in Junk et al. (2011) (b). Please note
that Amazon Basin boundaries differ
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so far protected them from large-scale human degradation, keeping

them out of the interest of the international community, in opposi-

tion to the heavily disturbed Asian peatlands. New climatic stresses,

such as increased droughts and fire frequencies could, however,

reverse their forgotten status (Junk et al., 2013; Malhi et al., 2008).

If proven correct, our peatland estimates would evidence the current

misconception of the contribution of tropical peatlands to the global

carbon budget, with tropical peat volumes more than doubling cur-

rent estimates. This carries large implications for the role of pantrop-

ical wetlands and peatlands in the global GHG budgets, with large

risks of increased emissions both from land conversions and as a

result of feedback loops in the climate system.
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