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Abstract
Limited data exists on emissions from agriculture-driven deforestation, and available data are
typically uncertain. In this paper, we provide comparable estimates of emissions from both all
deforestation and agriculture-driven deforestation, with uncertainties for 91 countries across the
tropics between 1990 and 2015. Uncertainties associated with input datasets (activity data and
emissions factors) were used to combine the datasets, where most certain datasets contribute the
most. This method utilizes all the input data, while minimizing the uncertainty of the emissions
estimate. The uncertainty of input datasets was influenced by the quality of the data, the sample size
(for sample-based datasets), and the extent to which the timeframe of the data matches the period of
interest. Area of deforestation, and the agriculture-driver factor (extent to which agriculture drives
deforestation), were the most uncertain components of the emissions estimates, thus improvement in
the uncertainties related to these estimates will provide the greatest reductions in uncertainties of
emissions estimates. Over the period of the study, Latin America had the highest proportion of
deforestation driven by agriculture (78%), and Africa had the lowest (62%). Latin America had the
highest emissions from agriculture-driven deforestation, and these peaked at 974± 148 Mt CO2 yr−1

in 2000–2005. Africa saw a continuous increase in emissions between 1990 and 2015 (from
154± 21–412± 75 Mt CO2 yr−1), so mitigation initiatives could be prioritized there. Uncertainties for
emissions from agriculture-driven deforestation are ± 62.4% (average over 1990–2015), and
uncertainties were highest in Asia and lowest in Latin America. Uncertainty information is crucial for
transparency when reporting, and gives credibility to related mitigation initiatives. We demonstrate
that uncertainty data can also be useful when combining multiple open datasets, so we recommend
new data providers to include this information.

1. Introduction

Emissions fromlandusechange, andparticularlydefor-
estation have had a major impact on global carbon
budgets (Le Quéré et al 2015). The net flux of car-
bon from land use and land cover change between
1990 and 2010, was 12.5% of anthropogenic carbon
emissions (Houghton et al 2012). Most of these emis-
sions resulted from forest loss (Le Quéré et al 2015).
Reducing deforestation can potentially play a large role

in efforts to limit global temperature increases (Zarin
et al 2016, Wollenberg et al 2016), through mecha-
nisms such as reducing emissions from deforestation
and forest degradation and the role of conservation,
sustainablemanagementof forests andenhancementof
forest carbon stocks indeveloping countries (REDD+).
Information on what drives deforestation can pro-
vide input for policies such as REDD+, as actions
to reduce deforestation should directly address the
specific drivers (Salvini et al 2014). In order to be

© 2017 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/aa9ea4
https://orcid.org/0000-0002-1833-3239
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aa9ea4&domain=pdf&date_stamp=2016-03-30
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
mailto:sarah.carter@wur.nl
https://doi.org/10.1088/1748-9326/aa9ea4


Environ. Res. Lett. 13 (2018) 014002

eligible for payments related to REDD+, reporting
standards which include providing information on
uncertainties related to emissions estimates must be
adhered to. Uncertainty information is also a require-
ment for national greenhouse gas inventories (IPCC
2006). Uncertain estimates make informed choices on
mitigation approaches difficult, and also threaten the
credibility of initiatives which seek to address these
emissions (Pelletier et al 2015), such as REDD+.

Emissions from deforestation have been estimated
using a variety of methods and data sources (Houghton
et al 2012). Most approaches use activity data (area
estimates for land use change) and emissions factors
(changes in carbon stock due to a land use transition,
expressed per unit area). Input data for these esti-
mates includes ground observations, usually derived
from forest inventory data, and remote sensing data.
Countries report detailed information on deforesta-
tion, and this is compiled every 5 years in the Global
Forest Resources Assessments (FRA) (FAO 2017). Data
used in the FRA include both inventory-based and
remote-sensing-based estimates. Remote sensing data
are considered particularly useful for forest monitoring
(De Sy et al 2012, Goetz et al 2015). Increased access
to remote sensing data (through for example the open-
ing of the Landsat archive), allowed for the production
of multiple estimates of activity data and emissions
factors. Besides the IPCC Tier 1 default factors pro-
viding the average forest biomass per ecozone, which
may not always fit the country circumstances (Avitabile
et al 2011), emission factors can be derived from sev-
eral maps of forest carbon density (see for example:
Avitabile et al 2016, Baccini et al 2012, Saatchi et al
2011, Zarin et al 2016, Tyukavina et al 2015). Sam-
ple data are also useful for regional assessments of
deforestation and emissions factors (De Sy et al 2015,
Achard et al 2014). Since datasets use different input
data types and methodologies (see for example: Har-
ris et al 2012b, Mitchard et al 2013, Grace et al 2014,
Grainger 2008), a large number of different estimates
exist, which can be confusing for policy makers (Harris
et al 2012a). Currently, there is a lack of comprehen-
sive data on the agricultural drivers of deforestation. De
Sy (2016) however, produced estimates of the fraction
of deforestation which is driven by agriculture using a
sample-based approach. The synthesis by Hosonuma
et al (2012) also provides estimates based on country
reported data, but the data have large uncertainties,
so making conclusions from their findings is difficult.
Gibbs et al (2010) also provide information on the
dynamics between agriculture and forests, and con-
clude that 83% of agriculture expansion between 1980
and 2000 was into forests. Since forest loss worldwide
as well as in the tropics is mainly driven by agricultural
expansion (Kissinger et al 2012), our study aims at pro-
viding a quantitative assessment of agriculture-driven
deforestation including uncertainties.

Forest loss is one of the most uncertain compo-
nents of global carbon budget (Houghton et al 2012,

Canadell et al 2010). Many datasets do not pro-
vide uncertainty information (for example the FRA).
Remote sensing derived estimates often provide infor-
mation about the uncertainties of datasets, but different
methods result in different outcomes (see for exam-
ple Schepaschenko et al 2017). Many estimates do not
indicate how the results were calculated, or do not
use uncertainties to provide better estimates (Olofsson
et al 2013). Uncertainty can be quantified using empir-
ical and statistical approaches (for example in the case
of remote sensing; pixel level uncertainty estimates, or
map accuracies), and also expert judgement. The IPCC
and other sources provide guidelines on how to pro-
duce and report these estimates (GOFC-GOLD 2016,
IPCC 2006). It is not only the input datasets for which
uncertainty data is required, but also the final emissions
estimates. This means that uncertainty for the input
datasets must be correctly combined to produce the
emission uncertainty (for example when using activity
data with an emissions factor).

Our objectives are to (1) quantify uncertainty asso-
ciated with input datasets (activity data and emissions
factors) used in emissions calculations; (2) calculate
a best estimate of emissions from deforestation and
agriculture-driven deforestation based on the most cer-
tain datasets, to compare trends in space and time;
(3) calculate the uncertainty of the best emissions
estimates, and identify the input component which
contributes most to uncertainty, and (4) to make rec-
ommendations for use/selection of data and further
improvements on the estimation of emissions from
deforestation.

2. Data and methods

For 91 countries in the tropics, CO2 emissions from
all deforestation (D) and from only agriculture-driven
deforestation (ADD) were calculated. Agriculture-
driven deforestation, a subset of deforestation, is
defined as deforestation where the follow-up land-
use is agriculture. Agriculture is defined broadly
in this study, and includes subsistence agriculture,
and large-scale pastures, as well as tree crops (De
Sy et al 2015, Hosonuma et al 2012). A land-
use definition of gross deforestation from the FAO
was therefore used (see appendix S1 available at
stacks.iop.org/ERL/13/014002/mmedia) to assess if the
change was driven by agriculture. It was assumed that
emissions resulted from loss of above- and below-
ground biomass, a fraction of which remained (or is
replaced by new biomass) following deforestation. The
datasets and data availability are described in table 1
and figure 1.

Emissions were calculated from activity data and an
emission factor. Activity data were deforestation area
(A) for D, and for ADD, they also included the agricul-
ture driver fraction (fAAgri), representing the fraction
(f) of forest area replaced by agricultural land use. The
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Table 1. Description of input data for emissions estimates from deforestation and agriculture-driven deforestation.

‘Abbreviation’ Source Description

Deforestation area (A)

‘FRA’ The Global Forest Resource Assessment
(FAO 2015)

Country reported data on gross area of deforestation (deforestation), and net

changes in forest area (net). Uses FAO forest land-use definition of forests and forest

change. Net data cover the years 1990–2000, 2000–2005, 2005–2010, 2010–2015; and

deforestation 1988–1992, 1998–2002, 2003–2007, 2008–2012.
‘RSS’ Remote Sensing Survey (FAO and JRC
2012)

A sample-based dataset comprising 10 km× 10 km squares at intersections of every

degree line of latitude and longitude. FAO forest land-use definition of forests and

forest change are used. Data cover the years 1990–2000, and 2000–2005.
‘Kim’ (Kim et al 2015) Map based on 30 m resolution Landsat data. Forest-cover loss in forests >30%

canopy cover, and parcels >1 ha. Data cover the years 1990–2000, 2000–2005, and

2005–2010.
‘Hansen’ (Hansen et al 2013) Map based on 30 m resolution Landsat data of gross forest cover loss. 10% canopy

cover threshold for forests and 0% for deforestation. Data from 2000–2014 (all

years) are available.

Forest biomass (CB)

‘Baccini’ (Baccini et al 2012) Map of biomass in aboveground woody vegetation (AGB) in the tropics at a 500 m

resolution. In this study, AGB with a conversion factor from Saatchi et al (2011) is

used to calculate BGB. The map is representative of the time period 2007–2008.
‘Saatchi’ (Saatchi et al 2011) Map of forest carbon contained in AGB and BGB in the continental tropics at a 1 km

resolution. The map is representative of the early 2000s.
‘Avitabile’ (Avitabile et al 2016) Map of biomass in aboveground woody vegetation (AGB) in the tropics at 1 km

resolution obtained by the integration of the Baccini and Saatchi maps with an

extensive reference dataset. In this study, AGB with a conversion factor from Saatchi

et al (2011) is used to calculate BGB. The map is representative of the 2000s.

Lost biomass fraction (fCBAgri/fCBLU)

‘De Sy1’ (De Sy 2016)/(FAO and JRC
2012)/(Zarin et al 2016)/(Hansen et al 2013)

Deforested areas of the RSS dataset were interpreted using high resolution satellite

imagery to assess the land use after deforestation (follow-up land-use). For this study

follow-up land uses were aggregated to agriculture (fCBAgri) or to other land uses

(fCBLU). The fraction of biomass lost due to forest conversion were derived from a

30 m biomass map from Zarin et al (2016). The Hansen dataset was used as an

additional forest mask. Data cover the years 1990–2000.

Agriculture-driven deforestation fraction (fAAgri)

‘Hosonuma’ (Hosonuma et al 2012) Literature, country reports, and the country forest transition curve provided

information on the drivers of deforestation. Most data are representative of the years

2000–2010.
‘De Sy2’ (De Sy 2016)/(FAO and JRC 2012) The deforested areas of the RSS dataset were interpreted using high resolution

satellite imagery to assess the follow-up land-use. Data cover the years 1990–2005.

emissions factor comprised: the carbon in above- and
below-ground forest biomass (AGB+BGB; converted
to CO2) (CB) (before deforestation), and the fraction
of this biomass which is lost on the land following
deforestation in either all land uses (fCBLU), or only
agricultural land uses (fCBAgri) (equations (1) and (2))

𝐷 = A ⋅ CB ⋅ 𝑓CBLU (1)

ADD = A ⋅ 𝑓AAgri∗ ⋅ CB ⋅ 𝑓CBAgri. (2)

Thedeforestationarea (A)datasetsusedifferent defini-
tions of deforestation, and some are more suited to our
purposes than others (table 2). The datasets not match-
ing our (the FAO) deforestation definition needed to
be harmonized (see Keenan et al 2015). Three differ-
ences in the definitions make the estimates thematically
mismatched; (1) the use of a net change, rather than
only forest loss data, (2) the use of a land cover rather
than land use definition and (3) only accounting losses

in forest with a tree cover larger than 30% rather than
using the 10% threshold. The data were harmonized
using available data from which the mismatch was
estimated (see appendix S1 for details).

Outputs were generated for four time periods
between 1990 and 2015. The variable A was assumed
to be potentially dynamic over the time periods, but
the other variables were assumed to remain constant
(though uncertain).

For each component (x) (only A, CB, and fAAgri,
as fCBLU, and fCBAgri only had one available estimate)
a best estimate (𝑥̄) was calculated using a weighted
mean of available datasets. This weighted mean (𝑥̄) was
calculated (equation (3)), with weights (wi) being pro-
portional to the inverse of the error variance (𝜎i

2) for
the Ith dataset (so more certain estimates have larger
weights) (equation (4)). Variance for the weighted
mean (𝜎2𝑥) is then calculated (equation (5))

𝑥 =
Σ𝑛
𝑖=1𝑥𝑖𝑤𝑖

Σ𝑛
𝑖=1𝑤𝑖

(3)
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(a) Deforestation area

(b) Forest biomass

(c) Agriculture-driven deforestation fraction

1
2
3
4

Figure 1. Number of datasets available per country per component (a), (b), and (c) for 2000–2005.

Table 2. Suitability of area data to estimate agriculture-driven deforestation in this study.

Dataset Characteristics

FRA Some countries have gross deforestation data which matches the FAO definition, and all time periods are covered,

but net rather than gross data is provided in many cases.
RSS Some countries have few sample units, so data are generally best suited to regional estimates, however the

deforestation definition matches ours. Data are only available for the first two time periods.
Kim Few countries have data available, and the dataset uses a land cover rather than land use definition, and canopy

cover threshold differs. Data cover the entire time period.
Hansen Land cover definition rather than land use, however data for all canopy covers are available, so our chosen threshold

can be used. Data cover the last three time periods.

𝑤𝑖 =
1
𝜎2
𝑖

(4)

𝜎2
𝑥
= 1

Σ𝑛
𝑖=1𝑤𝑖

. (5)

We produced time-series of A by starting with the
best estimate of A at the country level calculated for the
2000–2005 period, since most data are available for this
time period. The variable A is then reconstructed for-
wards and backwards from this starting point. In other
words, estimates of A for other periods were only used
to identify the relative difference to the time periods
2000–2005 and not their absolute values. The trend for

the change between periods 1990–2000 and 2000–2005
was calculated from either or both FRA and RSS. The
trend for the change between periods 2000–2005 and
2005–2010, and between 2005–2010 and 2010–2015
was calculated from either or both FRA and Hansen.
Kim was not included in this part of the analysis, since
few countries were covered in that study. Where two
datasets were used, a weighted average was used,with
weights (equation (4)), relating to the uncertainty of
each dataset. The mean of the weights for the two
time periods relevant to the trend was used (i.e. trend
between 2000–2005 and 2005–2010 would use a mean
of the weights of the two time periods 2000–2005 and
2005–2010).
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Table 3. Error sources leading to uncertainty in the datasets.

Type of error Explanation

Lack of data Data do not cover the required time period, but data from other time periods are available and were used to

fill the gap in data lacking time periods by the data provider, or in this study.
Measurement-error: data
quality

Data may be approximated based on limited information, for example a country may lack the capacity to

report forest area accurately, as they lack recent satellite data, or do not have recent forest inventories.

Where visual interpretation of satellite data is used to produce information, there is an error associated with

this process.
Measurement-error:
Adjustment for thematic
mismatch or bias

Area of deforestation data were harmonized and the adjustment leads to error, as the true value of the

thematic mismatch is unknown. Likewise, forest biomass data were adjusted for bias (see appendix S1 for

details), which also introduces error.
Statistical sampling error The effect of the sampling size, and the variability between sample units contribute to errors in the estimate.

2.1. Identifying and quantifying uncertainty
The terms error and uncertainty, are often used inter-
changeably (Taylor 1997, Heuvelink 2005), and in this
study both are used; error to represent the difference
between an estimate and the true value, and uncer-
tainty to represent a quantification of the distribution
of error. If uncertainty information is not available,
potential error sourcescontributing touncertaintywere
identified and the magnitude of each source estimated
for each input dataset. All datasets were assessed for
the broad causes of uncertainty described by the IPCC
(2006) (summarized in table 3).

For each country, the uncertainties identified in
each dataset are defined for each time period (table 4).

For many datasets,it was not possible to quantify
uncertainty usingdata (e.g. with statistical approaches),
so data from additional sources and expert judgement
were used (appendix S2).

Theoverall uncertainty (𝜎2)was calculatedby com-
bining the uncertainties associated with each error
source (𝜎𝑖

2) (i…n) (equation (6)). Where all terms
(error sources) are assumed to additively contribute to
total uncertainty

𝜎2 = 𝜎2
𝑖
+ 𝜎2

𝑖𝑖
+⋯ + 𝜎2

𝑛
. (6)

Following guidelines from the IPCC, upper and lower
estimates correspond toa95%confidence interval (CI),
as a percent of the mean (IPCC 2006) (equation (7))

CI± =
√
𝜎2 ⋅ 1.96. (7)

In case the estimate for the area of deforestation
(A) was zero for a particular country, when calcu-
lating the confidence interval, A was substituted by
the mean deforestation estimate from other (non-zero)
time-periods in that dataset.

2.2. Propagating uncertainty
Once errors have been calculated for each dataset, they
must be propagated to derive uncertainties for D and
ADD. Errors associated with the inputs were assumed
to be independent, normally distributed, and without
bias. We used the exact equation for the variance of
the product of three and four independent random
variables (Goodman 1962) (equations (8) and (9)) to

calculate the output variance (𝜎2)

𝜎2(𝐷)=𝜎2[𝐴 ⋅ CB ⋅ 𝑓CBLU]
=(𝜎2(𝐴) + 𝐴2) ⋅ (𝜎2(CB) + CB2)⋅
(𝜎2(𝑓CBLU) + 𝑓 2

CBLU)−𝐴
2 ⋅ CB2 ⋅ 𝑓 2

CBLU

(8)

𝜎2(ADD)=𝜎2[A ⋅ EF ⋅ 𝑓CBAgri ⋅ 𝑓AAgri]
=(𝜎2(A) + 𝐴2) ⋅ (𝜎2(CB) + CB2) ⋅ (𝜎2(𝑓CBAgri)
+𝑓 2

CBAgri) ⋅ (𝜎
2(𝑓AAgri) + 𝑓 2

AAgri)
−A2 ⋅ CB2 ⋅ 𝑓 2

CBAgri ⋅ 𝑓
2
AAgri. (9)

2.3. Contribution of input uncertainty to uncer-
tainty of the emissions estimate
The contribution of each component was assessed as
the reduction in the output variance when the corre-
sponding input variance was set to zero. Inother words,
we recalculated (equations (8) and (9)) multiple times,
setting for each recalculation one of 𝜎2 (A),𝜎2 (CB),𝜎2

(fCBLU) or 𝜎2(fCBAgri), 𝜎
2(fAAgri) to zero. The lowest

outputvariance for which the variance of that element
(A, CB, fCBLU or fCBAgri, fAAgri) is set to zero, is the
one with the largest contribution to the uncertainty.

Some of the uncertainty estimates were based on
expert judgment. We used a sensitivity analysis to
explore how a different judgement would alter the
uncertainty of the final value. Initial assumptions (sec-
tion 2.1), were compared to three adjustments (table
5). For each adjustment, the emissions are recalcu-
lated, and the change in emissions estimate uncertainty
calculated.

3. Results

3.1. Data selection
We usedall available datasets to calculate emissions giv-
ing higher weight to the most certain dataset available.
Figure 2 shows the weight given to the datasets for each
component, based on their uncertainty.

Figure2 isdrivenbyboth theavailabilityofdata, and
the weight of each dataset. For component A, RSS and
FRA have the highest weighting for the most countries
(33 each). Large countries (Brazil, India, China) tend
to have a higher weighting for the RSS data, since they

5
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Table 4. Causes of error considered (✓) in each dataset.

Data source/type

of error

FRA RSS Hansen Kim Avitabile Baccini Saatchi De Sy1 De Sy2 Hosonuma

Data use/type Deforestation
area (A)

Forest biomass
(CB)

Lost biomass
fraction

(fCBAgri/fCBLU)

Agriculture-driven
deforestation fraction

(fAAgri)

Lack of data ✓a ✓cd ✓cd ✓ad

Measurement-
error: data
quality

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Measurement-
error: adjustment
for thematic
mismatch or bias

✓
e

✓ ✓ ✓ ✓ ✓

Statistical
sampling error

✓ ✓ ✓

e only ‘net’ data; a = 1990–2000; c = 2005–2010; d = 2010–2015 (no letter indicates that uncertainty applies to all time periods).

Table 5. Parameters for the sensitivity analysis. The original expert judgement, and adjusted uncertainties as a % of the estimate) for several
sources of uncertainty are shown.

Assumptions made for

errors/type of error

Original expert

judgement

Adjustment 1 (high

extrapolation error)

Adjustment 2 (high visual

interpretation error)

Adjustment 3 (high error from

adjustment for thematic mismatch or

bias)

Lack of data 15 30 15 15
Measurement-error: visual
interpretation error

5 5 30 5

Measurement-error:
adjustment for thematic
mismatch or bias

3 3 3 30

(a) FRA

(b) RSS

(c) Kim

(d) Hansen

(e) Baccini

(f) Saatchi

(g) Avitabile

(h) Hosonuma

(i) De Sy2
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Figure 2. Contribution (%) of (a) FRA, (b) RSS, (c) Kim, and (d) Hansen to estimates of A, and of (e) Baccini, (f) Saatchi, and (g)
Avitabile to estimates of CB, and of (h) Hosonuma, and (i) De Sy2 to estimates of fAAgri in 2000–2005.
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Table 6. The number of countries whose trend of deforestation area (A) was derived from each dataset or combination of datasets.

1990–2000 and 2000–2005 2000–2005 and 2000–2005 2005–2010 and 2010–2015

Datasets used to derive the trends

FRA 21 5 4
RSS 1 – –
FRA and RSS 69 – –
Hansen – 1 1
FRA and Hansen – 85 86

Dataset with the highest contribution to the trend

FRA 27 46 53
RSS 64 – –
Hansen – 45 38

have a larger number of sample units, which increases
the certainty of the data. The weighting of the RSS
data is also driven by the variability in the propor-
tion of deforestation in each sample within a country.
Countries which have better data (indicated by higher
capacities, or access to better data and support), for
example the majority of countries in South and Central
America, have a higher weighting for the FRA data. In
Africa, more countries (20 out of 43 countries) have
the highest weighting for the Hansen data. These tend
to be countries with lower capacity, and relatively few
RSS sample units. Kim consistently gets low weight-
ings, as although the uncertainties in terms of the CI
when expressed as a percent of the estimation are the
same as Hansen, the estimates tend to be higher, so
variances are also higher. For the biomass in forests,
these datasets generally have a more equal weighting,
however the Avitabile dataset is more certain, and car-
ries the highest weight in 85 of the 91 countries. For the
remaining 6 countries, Saatchi has the highest weight.
For the fractionof deforestationwhich is drivenby agri-
culture, in 43 out of 91 countries only the Hosonuma
data are available. For the remaining countries, most
(42 of 48) have a higher weight for the Hosonuma data.
The countries where De Sy2 has a higher weight are
larger countries, which as a result have more sample
units (Brazil, India, Mexico, Namibia, Venezuela and
Zambia).

3.2. Trend in area of deforestation
The area of deforestation is dynamic and drives most
of the trend of the emissions calculations. Between the
first two time periods (1990–2000 and 2000–2005), RSS
more frequently has the highest weighting. The last two
trends (between the last three periods) show a more
even distribution, where FRA and Hansen are almost
equally likely to contribute the most to the estimate
of deforestation. However FRA tends to dominate in
Latin America and Asia, while Hansen dominates in
Africa, with the exception of some countries includ-
ing Democratic Republic of Congo, South Africa, and
Madagascar most notably (figure 3, table 6).

The trends for the same time period derived from
two different datasets (either FRA and RSS or FRA and
Hansen) can disagree in the direction or the magni-
tude of the change. This difference can be relatively

large (mean absolute trend difference is 1.47), with the
FRA and RSS beingonaverage more different (absolute
difference of 1.9 between the periods 1990–2000 and
2000–2005), and FRA and Hansen being more similar.
In many cases, the trend direction is the same for both
datasets, and the trend between the last time periods
(2005–2010 and 2010–2015) has the most agreement
from the contributing datasets, with only 16% of
countries having conflicting trends. For the trend
between the first two time periods (1990–2000 and
2000–2005) 28% of countries have conflicting trends
from FRA and RSS.

A number of countries in Asia have the high-
est agriculture-driven deforestation between 1990 and
2005. In Africa, the majority of countries had their
highest period of agriculture-driven deforestation in
2010–2015 (figure 4).

3.3. Emissions from deforestation and agriculture-
driven deforestation
Latin America is the greatest contributor to global
emissions from deforestation and agriculture-driven
deforestation, while Africa is the lowest but shows a
continual growth in emissions (figure 5). In Africa, the
highest emission rates (412± 75 Mt CO2 yr−1) occur
in the 2010–2015 period, whereas for Latin America
the emissions peaked during 2000–2005 (971± 148 Mt
CO2 yr−1) and decreased afterwards. Overall, the high-
est annual emission rates (1792± 133 Mt CO2 yr−1)
occurred in 2005–2010, with the lowest in 1990–2000
(1511± 174 Mt CO2 yr−1). Although Brazil’s emis-
sions have declined since 2005, these emissions still
dominate in the region. Emissions from agriculture-
driven deforestation are on average 72% of emissions
from all deforestation. This is highest in Latin America
(78%), and lowest in Africa (62%). In Asia it is 67%.
The remainder of Latin America has the highest pro-
portion of agriculture-driven deforestation (94%), and
Indonesia has the lowest (52%).

3.4. Uncertainties
The uncertainty of the emissions estimates of
agriculture-driven deforestation range between ± 24.9
to ± 283.1% of the estimate, with a mean of ± 62.4%
per country (figure 6). The uncertainty for esti-
mates of emissions from deforestation range from
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(a) FRA

(b) FRA

(c) FRA

(d) RSS

(e) Hansen

(f) Hansen

1990-2000 to 2000-2005

2000-2005 to 2005-2010

2005-2010 to 2010-2015

0%

100%

Figure 3. Contribution (%) of FRA to the trend of deforestation area (A) between (a) 1990–2000 and 2000–2005, (b) 2000–2005 and
2005–2010, and (c) 2005–2010 and 2010–2015, RSS to the trend between (d) 1990–2000 and 2000–2005, and Hansen to the trend
between (e) 2000–2005 and 2005–2010, and (f) 2005–2010 and 2010–2015.

1990-2000

2000-2005

2005-2010
2010-2015

Figure 4. Period (years) of highest agriculture-driven deforestation.

± 10.7 to ± 260.9%, with a mean of ± 29%. At the
country level, typically Latin America has lower uncer-
tainties than Africa or Asia, however the highly forested
countries in Asia and Africa (for example Indonesia
and Democratic Republic of Congo) also have lower
uncertainties. Uncertainties for agriculture-driven
deforestation emissions are higher than uncertainties
for deforestation emissions (figure 5). When country
uncertainties are aggregated, uncertainties for emis-
sions are higher in Asia (± 22.5% for ADD and± 7.7%
for D), followed by Africa (± 16.7% for ADD and
± 6.1% for D), and Latin America (± 15.9% for ADD
and ± 6.1% for D). Uncertainties for global aggregates
are ± 11.4% for ADD and ± 4.3% for D.

For estimates of emissions from deforestation,
A is more frequently the largest contributor to the

uncertainty, and fCBLU is more frequently the smallest
contributor. In the case of emissions from agriculture-
driven deforestation, fAAgri is more frequently the
largest contributor to the uncertainty, and CB is
more frequently the smallest contributor. This pattern
is clear in all continents, with some exceptions, includ-
ing a number of countries in Latin America, wherethe
forest biomass fraction and lost biomass fraction con-
tribute to a relatively large amount of the uncertainty
(figure 7).

Sensitivity analysis was implemented to deter-
mine how changes to the uncertainty estimates for
each input variable influence the uncertainty of
the emissions estimates. Increasing the estimated
uncertainty associated with the adjustment for the
thematic mismatch leads to the largest change in the
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Figure 5. Annual emissions from agriculture-driven deforestation (Mt CO2), in (a) Africa, Latin America and Asia and (b) a breakdown
of those groups to Democratic Republic of the Congo (DRC), humid tropical Africa, the remainder of Sub-Saharan Africa, Brazil,
Pan-Amazon, the remainder of Latin America, Indonesia, mainland South and South-east Asia, and insular Southeast Asia. Error
bars represent the 95% confidence intervals (or range which represents the uncertainty around the estimate) for emissions from
agriculture-driven deforestation and total deforestation. The regions are defined by Tyukavina et al (2015).

uncertainty of the emissions estimate, and increasing
the extrapolation error leads to the smallest change to
the uncertainty. A 10 fold increase in the uncertainty
related to the adjustment of the thematic mismatch or
bias leads to a ± 17.74% change in the final uncer-
tainty estimate, which accounts for 63.73% of the

original uncertainty for emissions from agriculture-
deforestation. Doubling the extrapolation error from
± 15% to ± 30% leads to the smallest change in uncer-
tainty for deforestation emissions; only± 0.37%, which
accounts for 1.5% of the original uncertainty estimate
(appendix S2).

9



Environ. Res. Lett. 13 (2018) 014002

24%

>95%

Figure 6. Uncertainty (±%, which represents a 95% CI) of estimates of emissions from agriculture-driven deforestation. The colour
scale is in quantiles (equal frequency of observations per group, in order to better show the differences between countries).

Deforestation
(a) Area of deforestation (d) Area of deforestation

(b) Forest biomass (e) Forest biomass

(c) Remaining biomass fraction (f) Remaining biomass fraction

Agriculture-driven deforestation

(g) Agriculture-driven deforestation fraction
0%

100%

Figure 7. Contribution (%) to uncertainty of estimates of emissions from deforestation (D) (left side of figure) from (a) A, (b) CB,
(c) fCBLU , and emissions from agriculture-driven deforestation (ADD) (right side of figure) from (d) A, (e) CB, (f) fCBAgri, and (g)
fAAgri . The darker colours therefore represent the main sources of uncertainty in the two emissions estimates.

4. Discussion

We firstly compare the results of this study to the results
of other studies. Then we discuss several implications
from this study.

4.1. Deforestation estimates
In general, our results for area of forest loss are similar
(73–108%) to other published data (see appendix S3

for details). All the studies used in the comparison
use a land cover definition, and thus report forest losses
in land where there is no change in use, which would
not be included in our study. Our emissions from
deforestation are 52–75% lower than those from other
studies because we take into account the new biomass
which replaces forest biomass, or the biomass from
the forest which remains on the land, whereas other
studies assume that all the biomass is lost following
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deforestation. This makes a large difference in Asia,
where due to tree crops often replacing forests, the
biomass lost is replaced by more new biomass than in
other landuse conversions.Thedefinitionof forests can
also explain some of the differences. Tyukavina et al
(2015) have a higher canopy cover threshold (25%),
while Harris et al (2012b) look at the removal of any
forest cover. This particular difference would lead to an
underestimation from our study in comparison to
Tyukavina et al (2015), and an overestimation in com-
parison to Harris et al (2012b). Achard et al (2014)
distinguishes between forests and tree cover mosaics
(>70% and 30–70% tree cover respectively), and also
‘other wooded land’ (OWL). OWL is defined as ‘all
other woody vegetation (height <5 m), including
shrubs and forest regrowth’. OWL is also likely to
be found in dry forests, which are difficult to mea-
sure, and there is more disagreement over their extent
(Bastin et al 2017). Data from Achard et al (2014) used
for the comparison could include OWL which is not
included in the definition of forests in this study, so
we would expect this to lead to higher results from
Achard et al (2014). The results for South and Central
America are more in agreement in these two stud-
ies than those for Africa and Asia. Proportionately,
according to Achard et al (2014) there is more OWL
in Africa: 58% of the total forest in 2010, in compari-
son to South and Central America and South East Asia,
which have 18% and 31%, so this could explain the
differences.

4.2. Data selection for emissions estimates
The best combination of data for emissions estimates
differed from country to country (figures 2 and 3).
Input data were weighted according to their uncer-
tainty, and these weights can guide decision makers
on data selection in similar contexts to this study. It
should also be noted that in addition to the uncertainty
of the dataset influencing the weight, the magnitude
of the estimate also influences the weight. For exam-
ple, the Kim dataset consistently had lower weights
than Hansen, even though the two datasets had similar
percent confidence intervals, due to the higher esti-
mates of Kim. For biomass, the Avitabile dataset is
most often selected, unless it is not available, where
Saatchi is selected. However all datasets have similar
uncertainties so could all be considered useful. For the
agriculture-driver fraction, the results of this study sug-
gest that only large countries should use De Sy2 above
the Hosonuma data. We however suggest that an indi-
vidual examination of both datasets at the national level
may lead to different conclusions about the reliability
of the datasets. In fact, both Hosonuma and De Sy2
were found to have large uncertainties.

4.3. Reducing emissions from agriculture-driven
deforestation
The urgent need to limit global temperature increases
below 2 ◦C will require actions to reduce all emissions

sources, and as a major source of deforestation emis-
sions, reducing agricultural expansion into forests
should be considered as a mitigation priority. Latin
America currently has the largest emissions from the
regions in this study, however emissions have been
reducing over the period of the study (figures 4 and
5). Africa has seen a consistent increase in emissions
between 1990 and 2015, as predicted by past studies
(Barnes 1990). Countries or regions with the largest
increase in emissions could be targeted for mitiga-
tion actions, for example DRC which saw a large
increase between 1990 and 2005, and humid Africa
which saw a large increase between 2005 and 2015. In
order to address agriculture-driven deforestation, tar-
geted interventions should be developed which address
specific agricultural activities. In these cases, interven-
tions in the agriculture sector to mitigate emissions
from agriculture-driven deforestation can be effective.
Areas with either a yield gap which can be reduced, or
with available degraded land which can potentially be
rehabilitated have been highlighted for their mitigation
potential (Carter et al 2015). There is some debate on
the conditions under which these agricultural interven-
tions will be successful (see for example Angelsen and
Kaimowitz 2001), however implementation of forest
protection activities (such as REDD+) are highlighted
as being essential to ensure that forests are protected
(Mertz and Mertens 2017). Although in all the coun-
tries included in this study, agriculture was found to be
the largest driver of deforestation, it could be the case
that in the futureotherdrivers becomemore important,
and we acknowledge the need to monitor all drivers. In
this paper we do not address emissions related to other
carbon pools (such as soil), or indirect emissions for
example those related to the life cycle of agricultural
products (which may lead to further deforestation).
These will result in additional emissions above those
considered in this study. Additionally we do not include
emissions from forest degradation, which may be sig-
nificant as estimated by (Baccini et al 2017), and can
also result from agriculture.

4.4. Limitations of this study
Estimates of the trend in area of deforestation were pro-
vided by two datasets for each time period, and were
in some cases very different (section 3.2). We used a
weighted mean to prioritize the most certain estimate,
however in the case that the two datasets predict an
opposite trend (one increasing and one decreasing),
the weighted average will thus produce a trend which
is closer to 1, which may not reflect the actual trend.
This effect will be most seen in the first time period,
where there is more disagreement between datasets.
Another challenge in this study was the production
of comparable uncertainty estimates. Using uncertain-
ties from the data providers themselves, could lead to
better results. The current method relies on assump-
tions about the uncertainties related to the datasets,
as many were lacking information or had uncertainty

11



Environ. Res. Lett. 13 (2018) 014002

information which could not be used in this study.
Our research estimated uncertainties which aimed to
capture all the sources of error for each dataset, and it
could be that errors exist which were not included in
the study. In some cases, expert judgement was used
to quantify the uncertainty, which may be erroneous.
However sensitivity analysis confirmed (section 3.4)
that in many cases the change in uncertainty was not
large following a change in the assumptions which were
based on expert judgement. Hence, if our uncertainty
estimates based on expert judgement are incorrect, this
will not substantially influence the overall uncertainty
estimates. Additional uncertainties exist in the ancil-
lary data are used to harmonize the datasets (due to
thematic mismatch) but we chose not to include those
uncertainties, as they are unknown, although some
error is assumed to be included during harmoniza-
tion. Future studies could explore this further. Lack
of available data also limited the study. Only the area
dataset was considered to be dynamic, with the remain-
ing datasets assumed to be constant over time. Because
there is not available data over time for emissions fac-
tors or drivers of deforestation, we were not able to
capture this dynamic in our end results. This means
that the trend in emissions is determined mainly by
the area data, and in reality it may be influenced by
changes over time in the other inputs, for example
emissions factors.

4.5. Reducinguncertainties in estimatesof emissions
from agriculture-driven deforestation
Uncertainties associated with our estimates of D and
ADD are in some cases very high at the country
level (for example Uruguay is ± 182% for ADD),
although the average for ADD is much lower (± 62%)
(figure 6). Large uncertainties are in line with find-
ings in Houghton et al (2012), and Roman-Cuesta
et al (2016) who found that uncertainties from for-
est loss contribute to 98% of the uncertainty of AFOLU
emissions, while only contributing to 69% of the emis-
sions. The authors recommend that uncertainties are
reported in future datasets (to increase transparency),
and that improvements indatasets (increased certainty)
should be pursued. Since area data and agriculture-
driver factors are the least confident, improvement in
the uncertainties related to these estimates will also
provide the greatest reductions in uncertainties of
emissions estimates. There are two ways to address
these uncertainties when reporting for mechanisms
such as REDD+. Either the upstream uncertainties
are reduced by improving the input datasets, or the
emissions estimates are adjusted downstream, by dis-
counting or reducing the estimates (a conservative
approach) to avoid overestimating emissions reduc-
tions (Pelletier et al 2015). The findings of this study
suggest that the upstream adjustments should be made
to avoid having to implement downstream adjust-
ments, which reflect negatively on the credibility of the
mechanism.
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S, Hansen M C, Le Quéré C and Ramankutty N 2012 Carbon
emissions from land use and land-cover change Biogeosciences
9 5125–42

IPCC 2006 2006 IPCC Guidelines for National Greenhouse Gas
Inventories ed H S Eggleston, L Buendia, K Miwa, T Ngara and
K Tanabe (Kanagawa: National Greenhouse Gas Inventories
Programme, IGES)

Keenan R J, Reams G A, Achard F, de Freitas J V, Grainger A and
Lindquist E 2015 Dynamics of global forest area: results from
the FAO global forest resources assessment 2015 Forest Ecol.
Manage. 352 9–20

Kim D-H, Sexton J O and Townshend J R 2015 Accelerated
deforestation in the humid tropics from the 1990s to the 2000s
Geophys. Res. Lett. 42 3495–501

Kissinger G, Herold M and De Sy V 2012 Drivers of deforestation
and forest degradation: a synthesis report for REDD+
policymakers Report (Vancouver: Lexeme Consulting)
(www.decc.gov.uk/assets/decc/11/tackling-climate-
change/international-climate-change/6316-drivers-
deforestation-report.pdf)
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