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Abstract
Sub‐Saharan Africa (SSA) could face food shortages in the future because of its  
growing population. Agricultural expansion causes forest degradation in SSA through 
livestock grazing, reducing forest carbon (C) sinks and increasing greenhouse gas 
(GHG) emissions. Therefore, intensification should produce more food while reducing 
pressure on forests. This study assessed the potential for the dairy sector in Kenya to 
contribute to low‐emissions development by exploring three feeding scenarios. The 
analyses used empirical spatially explicit data, and a simulation model to quantify 
milk production, agricultural emissions and forest C loss due to grazing. The scenarios 
explored improvements in forage quality (Fo), feed conservation (Fe) and concentrate 
supplementation (Co): FoCo fed high‐quality Napier grass (Pennisetum purpureum), 
FeCo supplemented maize silage and FoFeCo a combination of Napier, silage and 
concentrates. Land shortages and forest C loss due to grazing were quantified with 
land requirements and feed availability around forests. All scenarios increased 
milk yields by 44%–51%, FoCo reduced GHG emission intensity from 2.4 ± 0.1 to 
1.6 ± 0.1 kg CO2eq per kg milk, FeCo reduced it to 2.2 ± 0.1, whereas FoFeCo in‐
creased it to 2.7 ± 0.2 kg CO2eq per kg milk because of land use change emissions. 
Closing the yield gap of maize by increasing N fertilizer use reduced emission intensi‐
ties by 17% due to reduced emissions from conversion of grazing land. FoCo was the 
only scenario that mitigated agricultural and forest emissions by reducing emission 
intensity by 33% and overall emissions by 2.5% showing that intensification of dairy 
in a low‐income country can increase milk yields without increasing emissions. There 
are, however, risks of C leakage if agricultural and forest policies are not aligned lead‐
ing to loss of forest to produce concentrates. This approach will aid the assessment 
of the climate‐smartness of livestock production practices at the national level in 
East Africa.
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1  | INTRODUC TION

Low agricultural productivity and population growth in Sub‐Saharan 
Africa (SSA) threaten current and future food security and increase 
the risk of degrading natural ecosystems (Grassi et al., 2017; Herrero 
et al., 2016). The majority of food in SSA is produced on farms with 
low productivity, stagnating crop yields due to nutrient‐depleted 
soils, and small farm sizes (Samberg, Gerber, Ramankutty, Herrero, 
& West, 2016; Sanchez, 2015). Food production on smallholder 
farms has to be intensified sustainably to reduce malnutrition and to 
adapt to erratic weather patterns and prolonged drought (Challinor, 
Koehler, Ramirez‐Villegas, Whitfield, & Das, 2016; van Ittersum  
et al., 2013). Climate‐smart agriculture (CSA) was conceived as a 
concept for agricultural systems to adapt to climate change, thereby 
mitigating anthropogenic impacts on the climate while safeguard‐
ing food security (FAO, 2013). Agriculture is the main cause of 
forest loss in SSA, resulting in reduced forest carbon (C) sinks and 
increased greenhouse gas (GHG) emissions (Carter et al., 2015). In 
addition to the conversion of forests into farm land, timber logging 
and fuelwood extraction, livestock grazing contributes to reduced 
forest C sinks by preventing tree regrowth (Brandt, Hamunyela, 
et al., 2018; Hosonuma et al., 2012; Pearson, Brown, Murray, & 
Sidman, 2017). Unlike in most high‐income countries, in SSA for‐
est grazing is a common practice among cattle farmers and serves 
as an alternative source of feed when feed stocks on agricultural 
land are depleted (Sankhayan & Hofstad, 2001; Schiere, Ibrahim, 
& Keulen, 2002). Together, these anthropogenic activities modify 
forest structure, reduce C sequestration, affect water and nutri‐
ent cycling (Lawrence & Vandecar, 2015), and biodiversity (Barlow  
et al., 2016), which ultimately have a negative feedback on agricul‐
tural production.

To address these increasing pressures, several SSA countries are 
developing policies and instruments that combine elements of CSA 
and development targets for the agricultural sector. Kenya, as a good 
example of such countries, has recently developed a national CSA 
strategy, which aims to transform the country's agricultural sector 
towards a climate‐smart food production system. Agriculture is not 
only Kenya's economic backbone, but it also contributes approxi‐
mately 40% of the country's GHG emissions budget. About 90% of 
the agricultural emissions are associated with livestock production 
(Government of Kenya, 2015a). As part of its ambitious economic 
development plan, Kenya seeks to develop its dairy sector to be 
able to meet the increasing demand for milk driven by a booming 
urban population (Government of Kenya, 2010). Dairy production 
engages approximately two million smallholder farmers, who con‐
tribute about 80% of the total milk production in Kenya (Udo, Weiler, 
Modupeore, Viets, & Oosting, 2016). Increasing the production by 
larger herds would raise the demand for feeds, increase GHG emis‐
sions from enteric fermentation, animal manure, and augment soil 
emissions from feed production and the more intensive utilization 
of pastures. A plan to increase the country's milk production is con‐
strained by the current low yields of feed crops, small farm sizes, 
and insufficient arable land, which results in increased pressure on 

natural forests and the risk of forest loss (Bosire et al., 2016; Brandt, 
Hamunyela, et al., 2018). To develop dairy production in accordance 
with CSA objectives, the dairy sector will have to intensify the milk 
production sustainably so that the increase in production does not 
lead to higher demands for agricultural land and to the resulting ex‐
pansion into natural ecosystems.

The Nationally Determined Contribution (NDC) and the dairy 
master plan of Kenya define specific targets for climate change mit‐
igation and for the development of the livestock sector. According 
to these national policies, the increase in total GHG emissions in 
Kenya has to be lowered by 30% relative to projected business‐ 
as‐usual emissions between 2010 and 2030 (Government of Kenya, 
2015b). Within the same period, milk yields per cow should increase 
by 150% to ensure that local dairy production meets the increased 
requirements for food and nutrition due to population growth 
(Government of Kenya, 2010). Furthermore, a newly developed 
Nationally Appropriate Mitigation Action (NAMA) for the dairy sec‐
tor in Kenya defines a low‐emission development pathway, which 
aims to increase on‐farm productivity by promoting the adoption of 
high‐quality feeds (Government of Kenya, 2017).

Forest degradation is the largest component (75%) of the for‐
est emissions in Kenya, where deforestation rates have been around 
35,000 ha/year in the last three decades (Carter, Herold, et al., 2018; 
Pearson et al., 2017). In a recent analysis, Brandt, Herold, and Rufino 
(2018) reported potential synergies between milk yield increases 
and GHG mitigation benefits on agricultural land to be realized by 
improving the quality of dairy feeds. In addition, intensified small‐
holder dairy farms located close to forests were associated with a 
reduced risk of local forest degradation (Brandt, Hamunyela, et al., 
2018). The analyses showed that changes in livestock diets may 
require the conversion of grazing land to cultivate more nutritious 
feeds, which would cause GHG emissions from land use change 
(LUC) and reduce the effectiveness of the feed improvements for 
climate change mitigation (Brandt, Herold, et al., 2018). Promoting 
dairy production in regions without agricultural land available for 
feed cultivation could, therefore, increase the risk of C leakage as 
farmers may use adjacent forests for grazing. In these cases, closing 
the yield gap of feed crops may reduce the demand for additional 
land and, thus, alleviate the pressure on forests. To date, there are 
no assessments that integrate the effects of dairy intensification 
and GHG mitigation on forests in SSA. However, the integration of 
these land use sectors is crucial for effective CSA targeting and plan‐
ning with the added value of preventing C leakage. This study was 
designed to answer two main questions: (a) Can feed improvement 
strategies reduce total GHG emissions from agricultural production? 
and (b) Can emission intensities from dairy production be reduced? 
We addressed these questions by exploring the potentials of im‐
proved dairy feeds, including closing the yield gap of fodder maize 
and decreasing forest C loss due to livestock grazing in the dairy 
production region of Kenya. We used empirical data from Kenya's 
dairy production region, and the livestock production model LivSim 
(Rufino et al., 2009) to calculate milk yields and GHG emissions for 
three different intensification scenarios. Remote‐sensing data were 
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used to quantify forest C change and to approximate, for the first 
time, an estimation of forest C loss related to livestock grazing. The 
scenarios considered in this study are aligned with current policy ob‐
jectives of dairy intensification and mitigation of GHG emissions in 
the agricultural and forestry sectors.

2  | MATERIAL AND METHODS

2.1 | Study area

The intensive dairy sector is located in the Central and Western 
highlands of Kenya covering about 65,000 km2 and characterized 
by smallholder crop–livestock production (Herrero et al., 2014). 
The area shows the highest densities of human and livestock pop‐
ulations throughout Kenya (Imo, 2012), and produces most of the 
milk that is marketed in the country. This region is also home to the 
last Afromontane forests, often called ‘the water towers’ because 
of their important role supplying water to urban centres (Jacobs, 
Breuer, Butterbach‐Bahl, Pelster, & Rufino, 2017). These forests 
include the Aberdare range, the Cherangani Hills, the Mau Forest, 
Mount Elgon and the Mount Kenya Forest. All these forests are 
under enormous pressure from population growth and forest deg‐
radation due to the unsustainable use of forest resources (Drigo, 
Bailis, Ghilardi, & Masera, 2015; Imo, 2012).

2.2 | Analytical framework

Three steps were followed in the analyses (Figure 1): First, spa‐
tially explicit data on net forest C loss and gain were preprocessed. 
To derive forest C loss due to dairy cattle grazing, forest C loss 
from forest fires was excluded and fuelwood extraction sub‐
tracted from net forest C loss. Second, to quantify the relation‐
ship between smallholder farming practices and forest C change, 
farm indicators and farm types derived from a farm survey con‐
ducted by Brandt, Herold, et al. (2018) were related to net for‐
est C loss, gain and change. Third, the livestock simulation model 
LivSim was run to compute spatially explicit data on milk produc‐
tion, agricultural GHG emissions from dairy production and the 
requirement of land to produce feeds. The composition of feeds 
in the baseline and three feed scenarios reflect typical diets for 
dairy cows in Kenya. The scenarios include (a) improving forage 
quality (FoCo) by supplementing larger quantities of Napier grass 
(Pennisetum purpureum Schumach.) with concentrates; (b) using 
feed conservation (FeCo) by producing maize silage and feeding 
concentrates, closing the yield gap of fodder maize; and (c) a com‐
bination of Napier grass, maize silage and concentrates (FoFeCo). 
For these scenarios, the amount of additional land required to cul‐
tivate these high‐quality feeds was computed to estimate deficits 
of agricultural land for each pixel. Data sets of different resolution 
were resampled to a pixel resolution of 1 km2. Subsequently, the 
deficit of agricultural land to produce feeds for dairy cattle around 
forests was linked to forest grazing and C loss for each scenario to 
be able to quantify mitigation potential.

2.3 | Preprocessing (Step 1)

This step produced a new data set that quantified the forest C 
losses due to grazing cattle. Spatially explicit data sets of the 
changes in above‐ground biomass between 2003 and 2014 were 
used to quantify annual forest C changes (Baccini et al., 2017). 
These data sets include net gains (C gain) and losses of C (C loss) at 
a pixel resolution of 463 × 463 m and resampled to 1 km2 (Figure 1, 
step 1). A forest mask was applied to restrict the C change data to 
forests in 2016 to derive net forest C loss and net forest C gain. 
The forest mask was based on the land cover data set of Africa 
with a pixel resolution of 20 × 20 m (ESA, 2017). In addition, a data 
set of tree plantations from the Government of Kenya (2015c) was 
used to limit the forest mask to natural forests.

Forest wildfires emit substantial amounts of C (Hurteau, Koch, & 
Hungate, 2008), and leave open forests accessible for opportunistic 
livestock grazing. However, the C loss due to forest fires can neither 
be attributed to the presence of cattle in forests nor can this C loss 
be mitigated through improvements of cattle feeding. Therefore, pix‐
els that indicate burnt forest between 2003 and 2014 were excluded 
from forest C loss (Figure 1, step 1) using daily fire alert data from the 
‘Moderate Resolution Imaging Spectroradiometer’ (MCD14ML; Giglio, 
2015) and the ‘Visible Infrared Imaging Radiometer Suite’ (Schroeder, 
Oliva, Giglio, & Csiszar, 2014).

Fuelwood consumption in Kenya exceeds the capacity of forests to 
regrow and is responsible for about one‐third of the total forest emis‐
sions (Bailis, Drigo, Ghilardi, & Masera, 2015; Pearson et al., 2017). 
To account for this source of forest C loss, a spatially explicit data set 
of nonrenewable biomass (NRB) harvested annually as fuelwood was 
used at a pixel resolution of 100 × 100 m (Drigo et al., 2015). The NRB 
data set was subtracted from the net forest C loss data after restricting 
it to forests using the same forest mask applied previously to derive 
forest C loss‐cattle grazing (Figure 1, step 1). The proportion of dairy 
cattle was calculated by excluding beef cattle using county‐level data 
on cattle types (Government of Kenya, 2014). The forest ‘C loss‐cattle’ 
data was multiplied by the proportion of dairy cattle to calculate forest 
C loss that could be attributed to dairy cattle. The estimate of forest 
C loss due to grazing cattle is the first approximation of this C loss 
component and is based on our previous empirical work with observa‐
tions of cattle grazing in the forest (Brandt, Hamunyela, et al., 2018). 
To our knowledge there are no other spatially explicit data available 
that quantify the effects of livestock on carbon loss in East African 
montane forests.

To account for the propagation of uncertainties from input data 
sets such as net forest C loss and forest NRB which were used to 
quantify forest C loss from cattle grazing, we used the method by 
Lee and Forthofer (2006) and is expressed in Equation (1).

where var(forest C loss‐cattle grazing) is the variance associated 
with C loss from forest grazing, var(net forest C loss) is the variance 

(1)
var(forest C loss − cattle grazing) = var(net forest C loss)+var(forestNRB)

−2 × cov(net forest C loss, forestNRB),
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of net forest C losses, var(forest NRB) is the variance of fuelwood 
extraction and cov(net forest C loss, forest NRB) is the covariance of 
net forest C loss and loss from fuelwood extraction.

Relative standard deviations (SD) reported in Baccini et al. (2017) 
and Bailis et al. (2015) were used to quantify input variance and to 
estimate propagated uncertainties.

2.4 | Spatial relationship between dairy farms and 
forest C change (Step 2)

The effects of smallholder dairy farms on forest C change were 
based on empirical relationships established for the study area by 

Brandt, Hamunyela, et al. (2018). These analyses linked farming 
practices and farm characteristics to forest disturbance calculated 
from a remote‐sensing‐based time‐series analysis, and validated 
in the field (Brandt, Hamunyela, et al., 2018). The empirical data 
were obtained through a farm survey conducted in 2016 sampling 
216 smallholder farms, located in close vicinity to forests. Farm in‐
dicators included fuelwood extraction, milk yields, feed types in 
the cattle diet (such as grass from on‐farm pastures, fodder crops 
and dairy concentrate), farm area allocated to fodder crops and 
pastures, total farm size, total numbers of cattle and number of 
improved dairy cattle. Improved dairy cattle are cross breeds be‐
tween Bos taurus and Bos indicus, most commonly using artificial 

F I G U R E  1   Calculation of mitigation potential on agricultural land and forests for feed improvement scenarios, which include closing the 
yield gap of maize. Carbon (C) loss‐grazing = C loss due to dairy cattle grazing in forests, Carbon change‐grazing = Forest C change, which 
includes net forest C gain minus the C loss fraction due to dairy cattle grazing in forests, LivSim = livestock simulation model. Publically 
available data sets and models include references, empirical and new data sets are indicated using italics



572  |     BRANDT eT Al.

insemination with semen from Friesian bulls. Using these data, 
farms were clustered into three farm types: ‘small and resource‐
poor farms’, ‘large and inefficient farms’ and ‘intensified farms’. The 
results indicated that farms with more cattle and lower milk yields 
were associated with stronger forest disturbance effects and that 
farms, which used improved diets and attained higher milk yields 
caused less forest disturbance.

Farm indicators and farm types were linked to the forest C 
change data from remote sensing using circular buffers around farm 
centroids (Figure 1, step 2) to test whether similar forest disturbance 
and farm characteristics were detectable. A radius (r) of 5 km was 
selected for these buffers or ‘farm neighbourhoods’, because this 
radius determined the maximum neighbourhood size for which farm 
indicators and farm types were significantly correlated with for‐
est disturbance (Brandt, Hamunyela, et al., 2018). Forest C change 
included only the C loss correlated with dairy cattle (i.e. forest C 
change‐cattle grazing). Farm indicators were correlated with net for‐
est C loss, net forest C gain, forest NRB, forest C loss‐cattle grazing 
and forest C change‐cattle grazing. Collinearity between the selected 
farm indicators was previously checked by Brandt, Hamunyela,  
et al. (2018) and those that were highly correlated (Spearman's 
ρ ≥ 0.7) were excluded. Differences between farm types were tested 
using the nonparametric pairwise Wilcoxon rank sum.

2.5 | Quantifying the mitigation potential of dairy 
feed improvements (Step 3)

2.5.1 | Livestock modelling and feed scenarios

The livestock production model LivSim (Rufino et al., 2009) was used 
to quantify milk production and agricultural GHG emissions from 
smallholder dairy production. GHG emissions were quantified by 
following IPCC tier 2 methodology (IPCC, 2006) and included meth‐
ane (CH4) emissions from enteric fermentation, CH4 emissions from 
manure management, direct and indirect nitrous oxide (N2O) emis‐
sions from manure management, direct and indirect N2O emissions 
from managed soils, including fertilizer application and N2O and car‐
bon dioxide (CO2) emissions from LUC. Under each scenario, manure 
management varied depending on the amount of cropland required 
to cultivate Napier grass and fodder maize. For instance, in scenarios 
with reduced grazing, (FoCo and FoFeCo) the amount of manure 
dropped onto pastures was reduced and more manure was stored on 
heaps for further use as organic fertilizer. The approach accounted 
explicitly for emissions from synthetic fertilizer application, and did 
not include emissions from the production and transport of fertiliz‐
ers due to lack of data.

Improving diets often requires the cultivation of energy and pro‐
tein‐dense feeds with high digestibility that can increase milk yields 
(Hristov et al., 2013). Producing these feeds may require additional 
cropland and may cause the conversion of grazing or forest land. This 
analysis accounted for conversion of grazing land to croplands, and to 
estimate the impacts of concentrate production, we calculated emis‐
sions from their production as the land footprint for each scenario. 

To calculate the emissions from concentrate production we used av‐
erage composition and the emission factor reported by Weiler, Udo, 
Viets, Crane, and De (2014). For the land footprint we used yields for 
the different ingredients from FAOStat (2019). Milk yield and GHG 
emissions were computed by simulating dairy cows over a lifetime of 
13 years (Rufino et al., 2009; Tables S1 and S2). Model outputs were 
upscaled following the method of Brandt, Herold, et al. (2018) and 
represented in Figure S1. Subsequently, model outputs were mapped 
using spatially explicit data on livestock production systems (LPS), 
cattle density (Robinson et al., 2011, 2014) and dairy herd composi‐
tion (Bebe, Udo, & Thorpe, 2002; Government of Kenya, 2014).

Milk yields and GHG emissions were calculated for the baseline 
and scenarios (Figure 1, step 3). The baseline represented a typical 
diet for smallholder dairy cattle in Kenya with a large proportion 
of low‐quality grass and crop residues (Table S3). The analyses fo‐
cused on scenarios reported in Brandt, Herold, et al. (2018) as fol‐
lows: (a) improving forage quality by adding more Napier grass; (b) 
conserving feed as maize silage; and (c) increasing the supplemen‐
tation of dairy concentrates. These strategies were combined into 
the three scenarios: ‘forage quality and concentrate supplemen‐
tation’ (FoCo), ‘feed conservation and concentrate supplementa‐
tion’ (FeCo) and ‘forage quality, feed conservation and concentrate 
supplementation’ (FoFeCo). The baseline feeds for each LPS were 
replaced by 25% and 50% higher‐quality feeds (on a dry matter 
basis) and rations of concentrate were increased to 3 and 6 kg/day 
during the 150 day of early lactation representing medium inten‐
sification and high intensification levels respectively (Table S3). 
Changes in feeds relative to the baseline for each LPS are shown 
in Figure S2. The choice of scenarios was based on their mitigation 
potentials: (a) FoFeCo with low potential at high intensification; 
(b) FeCo with medium potential at medium intensification; and (c) 
FoCo with high potential at medium intensification level. The mit‐
igation potential was assessed through milk production and GHG 
emission intensity, including LUC but avoiding deforestation. The 
ranges of GHG emission parameters were sampled using Latin hy‐
percube sampling (LHS; Xu et al., 2005) to estimate overall emis‐
sion uncertainties of the baseline. Each parameter was sampled 
separately through LHS while all others were kept at their mean 
values. Emission uncertainties of the scenarios were estimated one 
parameter at a time, sampling at the minimum and the maximum of 
the parameter ranges.

2.5.2 | Closing yield gaps of maize

For each scenario, the cultivation of Napier grass and maize requires 
a certain amount of land. Brandt, Herold, et al. (2018) reported that 
scenarios which include maize silage require additional cropland to 
grow maize to prevent detrimental effects on food security since 
maize is mainly used for human consumption. In the highlands of 
Kenya, the yield gap of maize ranges between 30% and 82% sug‐
gesting a high potential to intensify maize production (van Ittersum 
et al., 2013). Closing the yield gap of maize using fertilizers would re‐
duce the additional land demand calculated in the scenarios. Carbon 
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emissions from LUC would be lowered at the expense of N2O emis‐
sions from soils due to increased rates of fertilizer application.

For this study, we selected the water‐limited yield potential (Yw) 
as the benchmark indicator for maize accounting for yield‐limiting 
factors such as water supply, soil properties (e.g. water holding ca‐
pacity) and topography (e.g. runoff). The actual maize yields of the 
baseline were increased to reach 50% and 80%. Farm yields often 
reach a saddle point around 80% of Yw, where it is not feasible for 
farmers to increase any further (van Ittersum et al., 2013). Actual 
yields (Ya) of maize cultivated in the Kenyan highlands were obtained 
from Castellanos‐Navarrete, Tittonell, Rufino, and Giller (2015), 
Monfreda, Ramankutty, and Foley (2008), and Weiler et al. (2014). 
Data on Yw of maize and the nitrogen (N) input required to realize 
Yw at 50% and 80% in Kenya were obtained from the Global Yield 
Gap Atlas. These estimates are based on agroclimatic zones used to 
upscale location‐specific yield estimates from crop simulation mod‐
elling (van Wart, Kersebaum, Peng, Milner, & Cassman, 2013; van 
Wart, van Bussel, et al., 2013). Yw and N input were linked to the LPS 
classification used in this study to upscale milk yield and GHG emis‐
sions. N input is the nitrogen requirement to achieve a target maize 
yield of either 50% or 80% water‐limited yield potential. The value 
of N input was increased by a factor to account for nitrogen use effi‐
ciencies of 33% for fertilizer N and 20% for manure N and used as an 
approximation of the crop's nitrogen uptake in above‐ground biomass, 
which in Kenya can be between 69 and 185 kg N/ha (Table S4; ten 
Berge et al., 2019). FeCo and FoFeCo which included maize silage 
were calculated for Ya, Yw at 50% and 80% (Figure 1, step 3).

2.5.3 | Land requirements to feed dairy cattle

Land requirements were calculated for each scenario by compar‐
ing the extent of grazing land and land demand to cultivate feeds 
per pixel using the R library raster (v. 2.5; Hijmans, 2016; R Core 
Team, 2016). Only existing grazing lands were assumed to be avail‐
able to cultivate additional Napier grass and maize, and we conse‐
quently calculated emissions from LUC using emission factors from 
Don, Schumacher, and Freibauer (2011). Demands for additional 
cropland were quantified based on the actual yields per feed type, 
water‐limited yield potentials of maize, crop‐specific feed intake per 
dairy cow (see Table S5) and the density of dairy cattle per 1 × 1 km 
pixel extracted from Robinson et al. (2014). Available land was quan‐
tified using a spatially explicit data set on grazing land (Velthuizen 
et al., 2007). Each pixel where the demand for cropland to produce 
feeds exceeded the extent of grazing land available was labelled as a 
pixel with land deficit. Spatially explicit polygons of land deficit were 
created for each scenario (Figure 1, step 3; Supporting Information 
section 4). On‐farm land requirements to produce concentrate in‐
gredients were not included because dairy farmers purchase con‐
centrates from the market and some ingredients are imported from 
outside Kenya (Weiler et al., 2014). However, to get an indication 
of the potential impact of concentrate production on indirect LUC, 
the land footprint associated with the annual amount of concen‐
trate required was calculated using crop yields from FAOStat (2019). 

Although deforestation in Kenya is limited to about 35,000 ha/year, 
we estimated the C emissions that would result from a worst‐case 
scenario of conversion of forests to cropland to produce the concen‐
trate ingredients, using an emission factor of 112.7 ± 3.9 Mg CO2eq/ha 
from Carter, Herold, et al. (2018).

The data sets on forest C loss‐cattle grazing, forest C gain and 
the polygons of agricultural land deficit were used to link forest C 
change to the production of feed crops on agricultural land. All pix‐
els with forest C loss‐cattle grazing, and forest C gain were assumed 
to be the baseline ‘forest C change’ to the grazing of dairy cattle. 
In the scenarios, it was assumed that the deficit of land to produce 
feed crops cause grazing in adjacent forests. Brandt, Hamunyela, 
et al. (2018) reported negative effects of livestock management 
on forest disturbance for farm neighbourhoods with a radius of 
5 km. Therefore, polygons of land deficit were buffered using this 
distance. For each scenario, pixels of forest C loss‐cattle grazing 
that intersected with polygons of land deficit represented forest 
C losses due to grazing. Finally, the sum of ‘forest C change’ due 
to grazing was calculated for each scenario and compared to the 
baseline to quantify the mitigation potential in forests (Figure 1, 
step 3).

3  | RESULTS

3.1 | Smallholder farms and forest C change

The empirical analysis of the farm data collected in the study region 
showed that number of cattle on farm was positively correlated with 
forest C loss due to grazing (ρ = 0.15; p < .05) and negatively cor‐
related with the forest C change‐cattle grazing (ρ = −0.17; p < .05; 
Figure 2). The number of improved dairy cattle per farm and milk 
yield were negatively correlated with forest C loss due to grazing 
(ρ = −0.37, −0.26; p < .001) and positively correlated with C change 
due to grazing (ρ = 0.39, 0.27; p < .001). The farm indicators of feed 
intensification (proportion of fodder crops in the diet, supplementa‐
tion of concentrates and farm area allocated to fodder crops) were 
negatively correlated with forest C loss due to grazing (ρ = −0.39, 
−0.21, −0.34; p < .001) and positively correlated with forest C change 
(ρ = 0.41, 0.22, 0.36; p < .001). Fuelwood extraction was positively 
correlated with NRB harvest (forest NRB; ρ = 0.47; p < .001).

Farm types had different effects on net forest C loss, forest 
NRB, forest C loss‐cattle grazing and forest C change‐cattle grazing 
(Figure 3). The results reported here refer to the area of influence of the 
dairy farms, empirically determined to be 5 km from the forest edge. 
Intensified farms were associated with significantly less forest C loss, 
less forest C loss‐cattle grazing and higher forest C change‐cattle graz‐
ing (means = 1,676.4, 512.0, and −54.6 kg C ha−1 year−1 respectively) 
than small and resource‐poor farms (means = 2,476.5, 855.5, and 
−565.8 kg C ha−1 year−1 respectively) and large and inefficient farms 
(means = 2,564.6, 980.6, and −842.0 kg C ha−1 year−1 respectively; 
p < .05; Figure 3a,c,d). Large and inefficient farms were associated 
with significantly higher forest NRB (mean = 656.2 kg C ha−1 year−1) 
than small and resource‐poor farms (mean = 501.0 kg C ha−1 year−1) 
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F I G U R E  2   Correlation between farm 
indicators and forest carbon C change 
variables: net forest C loss, net forest C 
gain, nonrenewable biomass use related to 
fuelwood harvest in forests (forest NRB), 
forest C loss‐cattle grazing and forest 
C change‐cattle grazing, which includes 
forest C gain and the forest C loss‐cattle 
grazing. Circle size indicates the strength 
of significant correlations. Blue = positive 
correlation, red = negative correlation

F I G U R E  3   (a) Net forest C loss, (b) 
forest C loss from fuelwood extraction 
(forest nonrenewable biomass), (c) forest 
C loss from cattle grazing, and (d) forest 
C change due to cattle grazing, which 
is forest C gain minus the forest C loss‐
cattle grazing for three farm types. Farm 
types are: small = small and resource‐poor 
farms, large = large and inefficient farms, 
intensified = intensified farms. Negative 
values in panel d indicate forest C loss. 
Different letters above whiskers indicate 
significant differences between farm 
types using pairwise Wilcoxon rank sum 
tests (p‐values were corrected for multiple 
testing)
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and intensified farms (mean = 463.1 kg C ha−1 year−1; p < .05; 
Figure 3b).

3.2 | Agricultural and forest mitigation potentials

3.2.1 | Agricultural GHG emissions

All forests located in the study area were affected by C losses and 
gains between 2003 and 2014, losing 781.6 Mg and on average 
8.9 kg CO2eq ha−1 year‐1 due to the grazing dairy cattle (Figure 4a,b). 
Changes in feeding, and closing the yield gap of maize used for si‐
lage production could reduce the amount of forest C loss. This effect 
is shown for the scenario FeCo, which combined feed conservation 
based on maize silage and concentrate supplementation (Figure 4c). 
However, deficit of arable land in the vicinity of forests to cultivate 
maize would lead to forest C loss due to cattle grazing to cover the 
feed shortage. Closing the yield gap of maize may reduce the amount 
of land required to grow additional maize and, therefore, could al‐
leviate the land deficit as shown for the Maasai Mau Forest region 
(Figure 4c–e).

Across the study area, the scenarios increased total agricul‐
tural GHG emissions in relation to the baseline by 3.2%–69.4% 
(±2.8–6.5; Figure 5a). The lowest increase of GHG emissions was 
for the FoCo scenario. The highest increase in emissions was for 
the FoFeCo scenario and with actual maize yields (baseline Ya), al‐
though GHG emissions from enteric fermentation were reduced 
by 1.9%–21.1%. The FoCo and FoFeCo scenarios had the lowest 
and highest effect on reducing emissions from enteric fermenta‐
tion. Emissions from manure management increased by up to 100% 

for the FoFeCo scenario. More N was excreted by cattle when the 
proportion of Napier grass in the cattle diet increased, which led 
to higher N2O emissions. GHG emissions from soils used to pro‐
duce cattle feeds increased by 48.3%–266.5%. The FoFeCo sce‐
nario, which included maize to produce silage and a water‐limited 
yield potential of Yw‐80 led to highest increases in feed‐related 
emissions (Figures 5a and 6) due to high fertilizer N application 
rates of up to 108.2–167.9 kg N/ha required to achieve higher 
yields. The scenarios that included silage (FeCo and FoFeCo) also 
had higher emissions from LUC compared with the FoCo scenario. 
Maize production required more land than Napier grass increasing 
LUC emissions from the conversion of grazing lands into cropland 
(Figure 5a). However, by increasing maize yield (i.e. Ya to Yw‐80) 
LUC emissions from FeCo and FoFeCo scenarios were reduced by 
69.0%–75.3%. The reduction of emissions from LUC was 2.6–4.9 
times higher than the increase of emissions from additional fertil‐
izer N. Despite the reduction of emissions from enteric fermenta‐
tion and LUC by closing the yield gap of maize, none of the feed 
scenarios would achieve a net GHG reduction from agricultural 
land. However, reductions in GHG emission intensities from forest 
C change would be achieved under FoCo, and FeCo and FoFeCo 
when closing yield gaps (Tables S7 and S8).

3.2.2 | Land footprint

The land footprint analysis indicated that under current average yields and 
for the medium intensification scenarios (FoCo and FeCo) over 500,000 ha 
would be required for concentrate production, while under the high in‐
tensification scenario (FoFeCo) land requirement would be approximately 

F I G U R E  4   Forest C loss due to dairy 
cattle and forest C gain. (a) Baseline 
forest C loss‐cattle grazing and forest 
C gain for the dairy region of Kenya. (b) 
Baseline forest C loss‐cattle grazing and 
forest C gain for the Maasai Mau Forest. 
(c–e) Forest C loss‐cattle grazing due to 
the deficit of grassland for the scenario 
FeCo, which combines feed conservation 
based on maize silage and concentrate 
supplementation. (c) Deficit of arable land 
and the forest C loss‐cattle grazing with 
actual maize yields (Ya). Achieving water‐
limited yield potential (Yw) of maize at 
50% (d) and 80% (e) may reduce the deficit 
of arable land by 7,729 and 14,158 ha 
respectively

(a)

(b)

(c) (d) (e)
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1.1 million ha. These are significantly larger areas than the estimated 
42,000 ha required for the current consumption of concentrates (average 
1% of the dry matter intake). Concentrate production could possibly be done 

within existing agricultural land by increasing current yields. However, if 
this land demand would cause deforestation of secondary forests in Kenya, 
this would lead to C emissions of approximately 57 ± 2 Mt CO2eq for the 

F I G U R E  5   Agricultural greenhouse 
gas (GHG) emissions and forest carbon 
C change related to dairy production. 
(a) Combined GHG emissions including 
those from forest C change due to cattle 
grazing; (b) GHG emission intensity per 
kg fat and protein corrected milk (FPCM). 
Bars indicate baseline and three scenarios 
at medium (FoCo, FeCo) or high (FoFeCo) 
intensification levels. FoCo and FoFeCo 
included maize silage, where we show 
actual maize yields (Ya) and Yields at 50% 
(Yw‐50) and 80% (Yw‐80) of water‐limited 
yield potentials (Yw). Error bars indicate 
relative SDs

F I G U R E  6   Changes in total agricultural 
greenhouse gas (GHG) emissions and 
forest carbon (C) change combined, 
which is forest C gain minus C loss due 
to cattle grazing. Bars show changes in 
GHG emissions for different scenarios and 
the baseline. Ya = actual baseline yields 
of maize, Yw‐50 = Yw realized at 50%, 
Yw‐80 = Yw realized at 80%. Bubbles 
indicate the percentage milk yield increase 
for each scenario
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medium intensification and of 118 ± 4 Mt CO2eq for the high intensification 
scenario. To put this additional land demand into context, at present, crop‐
lands and grazing lands occupy approximately 5 million ha of the dairy area, 

and the C emissions from the conversion of 1.1 million ha would be more 
than double the annual emissions (32 Mt CO2eq) of the Kenyan agricultural 
sector (Government of Kenya, 2015b).

TA B L E  1   Dry matter intake, feed intake (per cow per year), milk yields (kg of fat corrected milk per cow per year), yield increase and GHG 
emission intensity for each livestock production system (LPS) and feeding scenario (Baseline, FeCo, FoFeCo and FoCo), including three levels 
of yield gaps for fodder maize (Yo: actual yields, Y50: closing gap at 50%, and Y80: closing gap at 80%)

LPS Scenario

DMI  
(kg head−1  
year−1)

Feed types (kg head−1 year−1)

Milk yield  
(kg FPCM  
head−1 year−1)

Milk yield 
increase  
(%)

GHG  
emission 
intensity 
(kg CO2eq/kg  
milk)Pasture

Napier 
grass

Maize 
stover

Maize 
silage Concentrate

MRA Baseline

Yo 3,565 1,837 818 874 — 35 1,729 — 2.64

FeCo

Yo 4,391 1,837 818 402 883 450 2,489 44.0 2.38

Y‐50 4,391 1,837 818 402 883 450 2,489 44.0 2.04

Y‐80 4,391 1,837 818 402 883 450 2,489 44.0 1.93

FoFeCo

Yo 5,321 72 2,583 — 1,765 900 2,610 51.0 2.90

Y‐50 5,321 72 2,583 — 1,765 900 2,610 51.0 2.45

Y‐80 5,321 72 2,583 — 1,765 900 2,610 51.0 2.23

FoCo

Yo 3,980 955 1,701 874 — 450 2,507 45.0 1.76

MRH Baseline

Yo 3,621 1,233 1,321 1,031 — 36 1,881 — 2.40

FeCo

Yo 4,454 1,233 1,321 554 896 450 2,708 44.0 2.16

Y‐50 4,454 1,233 1,321 554 896 450 2,708 44.0 1.97

Y‐80 4,454 1,233 1,321 554 896 450 2,708 44.0 1.94

FoFeCo

Yo 5,883 — 3,113 77 1,793 900 2,840 51.0 2.64

Y‐50 5,883 — 3,113 77 1,793 900 2,840 51.0 2.24

Y‐80 5,883 — 3,113 77 1,793 900 2,840 51.0 2.20

FoCo

Yo 4,035 337 2,217 1,031 — 450 2,727 45.0 1.71

MRT Baseline

Yo 3,573 1,275 1,523 740 — 35 1,932 — 2.33

FeCo

Yo 4,437 1,275 1,523 304 885 450 2,782 44.0 2.10

Y‐50 4,437 1,275 1,523 304 885 450 2,782 44.0 1.94

Y‐80 4,437 1,275 1,523 304 885 450 2,782 44.0 1.89

FoFeCo

Yo 5,961 — 3,292 — 1,769 900 2,917 51.0 2.56

Y‐50 5,961 — 3,292 — 1,769 900 2,917 51.0 2.19

Y‐80 5,961 — 3,292 — 1,769 900 2,917 51.0 2.12

FoCo

Yo 3,988 390 2,408 740 — 450 2,801 45.0 1.67

(Continues)
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3.2.3 | Forest C change

Forest C loss due to grazing was reduced in all scenarios by 374.4–
2,113.3 Mg CO2eq/year (±98.0–493.3) relative to the baseline 
(Table S6). The scenarios producing maize silage with actual maize 
yields (FeCo–Ya: 374.4 ± 401.7 Mg CO2eq/year and FoFeCo‐Ya: 
730.7 ± 493.3 Mg CO2eq/year) showed the lowest reduction of 

48%–93% for forest C loss due to grazing. Realizing the water‐limited 
yield potential Yw at 50% and 80% lowered forest C loss due to grazing 
by two‐ to threefold (FoFeCo–Yw50%: 789.5 ± 78.9 Mg CO2eq/year; 
FeCo–Yw80%: 1,762.1 ± 392.5 Mg CO2eq/year), the land deficits 
were reduced and the production of maize on agricultural land in 
the vicinity of forests increased throughout the study area. Hence, 
closing the yield gap of maize could increase the forest C sink. The 

LPS Scenario

DMI  
(kg head−1  
year−1)

Feed types (kg head−1 year−1)

Milk yield  
(kg FPCM  
head−1 year−1)

Milk yield 
increase  
(%)

GHG  
emission 
intensity 
(kg CO2eq/kg  
milk)Pasture

Napier 
grass

Maize 
stover

Maize 
silage Concentrate

MIA Baseline

Yo 3,565 1,837 818 874 — 35 1,736 — 2.62

FeCo

Yo 4,391 1,837 818 402 883 450 2,500 44.0 2.36

Y‐50 4,391 1,837 818 402 883 450 2,500 44.0 2.05

Y‐80 4,391 1,837 818 402 883 450 2,500 44.0 1.93

FoFeCo

Yo 5,321 72 2,583 — 1,765 900 2,621 51.0 2.88

Y‐50 5,321 72 2,583 — 1,765 900 2,621 51.0 2.43

Y‐80 5,321 72 2,583 — 1,765 900 2,621 51.0 2.24

FoCo

Yo 3,980 955 1,701 874 — 450 2,517 45.0 1.77

MIH Baseline

Yo 3,621 1,233 1,321 1,031 — 36 1,880 — 2.40

FeCo

Yo 4,454 1,233 1,321 554 896 450 2,708 44.0 2.16

Y‐50 4,454 1,233 1,321 554 896 450 2,708 44.0 1.98

Y‐80 4,454 1,233 1,321 554 896 450 2,708 44.0 1.95

FoFeCo

Yo 5,883 — 3,113 77 1,793 900 2,839 51.0 2.64

Y‐50 5,883 — 3,113 77 1,793 900 2,839 51.0 2.28

Y‐80 5,883 — 3,113 77 1,793 900 2,839 51.0 2.20

FoCo

Yo 4,035 337 2,217 1,031 — 450 2,726 45.0 1.73

MIT Baseline

Yo 3,573 1,275 1,523 740 — 35 1,931 — 2.34

FeCo

Yo 4,437 1,275 1,523 304 885 450 2,781 44.0 2.11

Y‐50 4,437 1,275 1,523 304 885 450 2,781 44.0 1.97

Y‐80 4,437 1,275 1,523 304 885 450 2,781 44.0 1.92

FoFeCo

Yo 5,961 — 3,292 — 1,769 900 2,916 51.0 2.57

Y‐50 5,961 — 3,292 — 1,769 900 2,916 51.0 2.28

Y‐80 5,961 — 3,292 — 1,769 900 2,916 51.0 2.25

FoCo

Yo 3,988 390 2,408 740 — 450 2,801 45.0 1.69

TA B L E  1   (Continued)
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smallest deficit of arable land, the lowest forest C loss due to grazing 
and, therefore, the highest forest C sink potential were calculated 
for the FoCo scenario. This scenario showed the highest mitigation 
potential for agricultural land and for forests due to the highest re‐
duction of GHG emission intensities by 33% and forest C loss by 
270% while increasing milk production by 45% (Figure 6).

3.2.4 | GHG emission intensities

The GHG emission intensity of the baseline was 2.36 ± 0.05 kg 
CO2eq kg fat and protein corrected milk (FPCM); Figure 5b; Table 1).  
For the baseline and the scenarios emission sources included those 
from enteric fermentation, manure and soil management (cultiva‐
tion of feed crops), fertilizer application, concentrate and C emis‐
sions from LUC. Most scenarios reduced GHG emission intensities. 
The only exception was the FoFeCo scenario, with actual maize 
yield (Yo) which increased GHG emission intensity by about 11% 
(2.64 ± 0.10 kg CO2eq/kg FPCM). Realizing Yw at 50% and 80% 
reduced emission intensity by 1%–17% compared to the baseline. 
The lowest emission intensity was shown for the FoCo scenario 
(1.68 ± 0.05 kg CO2eq/kg FPCM), with a reduction of 33%. Milk pro‐
duction increased in all scenarios by 44.0%–51.0% relative to the 
baseline.

4  | DISCUSSION

4.1 | Intensification of smallholder dairy farms and 
forest C change

In this study, cattle numbers on smallholder farms in Kenya's dairy 
production region were positively correlated to the loss of forest 
C, and to the presence of cattle grazing in adjacent forests. This 
is the first study that provides such a quantitative measure of the 
impact of cattle production on tropical forests at sectoral scale in 
East Africa. Hosonuma et al. (2012) reported that 8%–12% of the 
forest disturbance across SSA can be attributed to livestock graz‐
ing in forests. The empirical study by Brandt, Hamunyela, et al. 
(2018) found that cattle grazing across a tropical montane forest 
in Kenya was associated with forest disturbance, with evidence 
found on 75% of the sites visited during a recent forest survey. 
Furthermore, this study reported an increased risk of forest dis‐
turbance by up to 5% due to higher numbers of total cattle on 
larger farms located adjacent to the forest. The use of montane 
forests by smallholder farmers to graze livestock was also re‐
ported for Ethiopia (Baudron, Duriaux Chavarría, Remans, Yang, 
& Sunderland, 2017; Duriaux Chavarría, Baudron, & Sunderland, 
2018), who found positive effects on dietary diversity and nu‐
trient balances on farms located in the vicinity of the forests 
(distance = 5.5 km) used for grazing. The authors argue that the 
amount of herbaceous biomass removed from the forest through 
grazing is likely lower than the regrowth rates, although they did 
not quantify the impact of forest grazing on C loss. The results of 
our study show a net forest C loss due to dairy cattle within the 

neighbourhoods of nonintensified smallholder farms ranging in 
average between 566 and 842 kg C ha−1 year−1. Although these C 
losses are small, cattle grazing prevents forest regeneration, which 
affects the long‐term forest C sink.

In addition, our study found that improved cattle feeding and in‐
tensified milk production on smallholder farms were associated with 
lower forest C loss due to cattle grazing. Intensification of small‐
holder agriculture is postulated to reduce the pressure on forest 
ecosystems, because farm productivity could reduce the demand 
for land (Campbell, Thornton, Zougmoré, Asten, & Lipper, 2014). 
This process of intensification based on more nutritious feeds and 
improved dairy cattle moving away from extensive systems would 
reduce the negative impact on local, natural ecosystems such as 
forests (Wollenberg et al., 2011). Vallin et al. (2013) showed that 
intensification of livestock production could lower GHG emissions 
from deforestation in SSA, by improving management practices such 
as better quality feeds. Similarly, Caviglia‐Harris (2018) reported 
that the intensification of dairy production in Brazil could reduce 
the pressure on forests through pasture intensification. In Kenya, 
Brandt, Hamunyela, et al. (2018) quantified a 7% lower risk of for‐
est disturbance when farms adjacent to forests had improved dairy 
cattle, attained higher milk yields and fed higher‐quality feeds. Thus, 
this study adds an important contribution to the current quantifica‐
tion of agricultural mitigation potentials providing empirical evidence 
of the connection between intensification of dairy and impacts on 
forest, and showing how to mitigate GHG emissions from forests.

4.2 | Mitigation across the land use sector

The increase of livestock productivity through higher feed quality 
supports agricultural mitigation mainly by increasing feed conversion 
efficiency and lowering CH4 emissions from enteric fermentation 
(Herrero et al., 2016; Hristov et al., 2013; Knapp, Laur, Vadas, Weiss, 
& Tricarico, 2014). For instance, in Costa Rica, Wattiaux, Iñamagua‐
Uyaguari, Casasola‐Coto, Guerra‐Alarcón, and Jenet (2016) showed 
the efficacy of improving feed quality in mitigating GHG emissions in 
intensified dairy farms. Similarly, our results of different feeding sce‐
narios show potential to reduce the GHG emission intensity of dairy 
in East Africa. We present evidence that closing the yield gaps of 
maize could play a role in limiting CO2 emissions from LUC by reduc‐
ing land demand and forest emissions due to grazing, which was pre‐
viously argued using results from global modelling studies (Herrero 
et al., 2016; Valin et al., 2013; Weindl et al., 2017). In our study, the 
effect of avoided forest grazing on the reduction of emission intensity 
from forest C change range from 0.02 to 0.06 CO2eq/kg milk, which is 
small compared to the reduction of emission intensities from agricul‐
tural land alone. However, as demand for livestock products increase 
in Africa and the dairy sector intensifies further, competing demands 
for land are likely to create more trade‐offs between climate change 
mitigation strategies. Therefore, the approach presented here is a 
novel contribution to quantify the effect of intensification of feeding 
practices in dairy farms and at landscape level, including forests as 
an important C sink.
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The increased N2O emissions due to higher fertilizer N applica‐
tion rates to close the yield gap of maize can be offset by reduced 
CO2 emissions from LUC on agricultural land due to lower land 
requirements as shown in this study (cf. Figure 5a), and modelled 
at coarser continental level (Havlík et al., 2014; Valin et al., 2013). 
The potential to close the yield gap of maize in Kenya is high (van 
Ittersum et al., 2013); maize is a staple crop in East Africa which is 
widely used to feed livestock as crop residue (Valbuena et al., 2012). 
However, the production of maize throughout the whole region 
does not meet the demand due to very low input use and poor pro‐
ductivity with average yields lower than 2 t/ha (van Ittersum et al., 
2016). Therefore, Kenya relies on imported maize for human con‐
sumption importing over 700,000 tonnes each year (USDA, 2017). 
Consequently, increasing maize yields could contribute directly to 
food security and to the intensification of the livestock sector as 
shown in this study. Given the competing demands for land, intensi‐
fication will increase the feasibility to implement feed improvement 
strategies, especially in regions with high human population and 
livestock densities (Brandt, Herold, et al., 2018; Gerssen‐Gondelach 
et al., 2017). Smallholder farmers across the Kenyan highlands often 
lack the land required to grow sufficient feeds of high quality (Bebe, 
2008), which leads to off‐farm grazing on common lands such as 
forests. This study shows that improvements of quality and pro‐
ductivity of feed crops such as the African Napier grass can reduce 
GHG emission intensities and emissions from agricultural land, and 
reduce the loss of C from forests grazing.

Producing maize silage, such as in the FeCo and FoFeCo sce‐
narios, would lead to reductions of forest C loss due to forest 
degradation, especially when yield gaps are closed. Realizing the 
water‐limited yield potential for maize at least at 50%, could turn 
forests into C sinks as the C gain exceeds the C loss due to cat‐
tle grazing. Increasing livestock productivity could result in land 
sparing as indicated in the global studies by Havlík et al. (2014), 
Kreidenweis et al. (2018) and Valin et al. (2013). This study adds 
empirical evidence to the results of these coarse modelling exer‐
cises by including spatial relationships between local farm prac‐
tices, land availability and forest C change. The characteristics of 

these relationships might be context‐specific and determined by 
market and infrastructure development, and therefore should be 
included into assessments of climate change mitigation that aim to 
determine the potentials for sustainable intensification at sectoral 
level.

Land requirement and the deficit of arable land would be 
lowest for the FoCo scenario, which improves forage quality 
by cultivating Napier grass and adding more concentrate to the 
diet. Under this scenario, there would be much less forest graz‐
ing to meet feed deficits on agricultural land, and the forest C 
loss would be reduced almost threefold, showing the largest 
forest C sink potential among scenarios. However, the amount 
of concentrates needed for all scenarios (Tables 2 and 3), could 
cause indirect LUC increasing absolute GHG emissions because 
of the low crop yields. With appropriate policies to limit LUC, 
the FoCo scenario could result in a net benefit for Agriculture, 
Forest and Other Land Uses (AFOLU) mitigation by reducing 
GHG emissions across the agricultural and forest sectors ef‐
fectively, since total agricultural GHG emissions and forest C 
change combined would be 2.5% lower than in the baseline. 
The current national dairy master plan and the dairy NAMA 
seek feed options that realize milk yield gains and mitigation 
benefits (Government of Kenya, 2010, 2017). The feed inten‐
sification strategies combined in the FoCo scenario represent 
promising technical ‘win‐win’ options for the dairy sector.

4.3 | Policy relevance: Targeting and financing the 
implementation of CSA practices

This study adds value to current policy debates in SSA on the 
contribution of the agriculture and forestry land use sectors to 
climate change mitigation by quantifying the intersection be‐
tween smallholder intensification in the Kenyan dairy sector and 
the reduction of emissions from forests. This approach evaluates 
the effectiveness of CSA practices to mitigate AFOLU emissions 
in the context of developing agricultural production at sectoral 
level. Several multiobjective modelling tools have been developed 

LPS

Population 
dairy cows  
(n)

Productive 
dairy cows  
(n)

Concentrate use

Baseline 
(tonnes)

FoCo 
and FeCo 
(tonnes)

FoFeCo 
(tonnes)

MRA 246,237 147,742 16,965 66,484 132,968

MRH 111,205 66,723 2,513 30,025 60,051

MRT 2,443,342 1,466,005 16,965 659,702 1,319,405

MIA 28,845 17,307 16,965 7,788 15,576

MIH 20,376 12,225 3,142 5,501 11,003

MIT 142,081 85,249 6,283 38,362 76,724

Total 2,992,086 1,795,251 62,834 807,863 1,615,726

Abbreviations: MIA, mixed irrigated system in arid areas; MIH, mixed irrigated system in humid 
areas, MIT, mixed irrigated system in tropical highlands; MRA, mixed rainfed system in arid areas; 
MRH, mixed rainfed system in humid areas; MRT, mixed rainfed system in tropical highlands.

TA B L E  2   Amount of concentrate 
and cow population for each livestock 
production system (LPS) of the study area 
under the medium (FoCo and FeCo) and 
high intensification (FoFeCo) scenarios
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to support decision‐making processes, which aim to prioritize CSA 
practices based on evidence by integrating qualitative and quan‐
titative information at various spatial and temporal scales (e.g. 
Brandt, Kvakić, Butterbach‐Bahl, & Rufino, 2017; Dunnet et al., 
2018). This study provides critical empirical data for such tools to 
explore the feasibility of CSA practices by considering land avail‐
ability and how to mitigate GHG emissions from agricultural land 
and forests.

Policy instruments such as NAMAs and NDCs aim to enable the 
development of climate‐smart food production and must, therefore, 
rely on compelling evidence that shows the potential of ‘win‐win’ 
solutions to benefit smallholder farmers and to contribute to climate 
mitigation goals (Grassi et al., 2017; Lipper et al., 2014). In addition, 
mitigation policies need to support the creation of economic incen‐
tives to foster the implementation of CSA practices and to reduce 
adoption barriers (Lipper et al., 2014). However, local and national 
policies need to incentivize development without causing rebound 
effects that can offset any gains in GHG emissions at farm or re‐
gional scales. Such offsets may be driven by feedbacks between 
improved farm practices and market responses triggering regional 
expansion of dairy farming. Effective policies have to incorporate 
mechanisms to avoid negative effects on forests and climate. Climate 
financing schemes require quantitative information on productivity 
gains and mitigation potentials of specific practices to inform deci‐
sions on investments targeted at farm level with positive impact at 
landscape level (Reed, Vianen, Deakin, Barlow, & Sunderland, 2016). 
Agricultural practices may affect tropical forests and their C dynam‐
ics by removing biomass through cattle grazing, which prevents for‐
est regeneration (Hosonuma et al., 2012; Pearson et al., 2017). The 
added value of this analysis is that it integrates direct effects of farm 
intensification on agricultural land and the indirect effects on forest 
use and emissions. These results highlight the need for policymak‐
ers in agricultural and forests sectors to work together and to de‐
velop more integrated policy frameworks based on the CSA concept 
and policies on ‘Reducing emissions from deforestation and forest 

degradation’ (REDD+) as discussed by Carter, Arts, et al. (2018) and 
Carter, Herold, et al. (2018).

4.4 | Limitations of this study and future research

To our knowledge, this is the first assessment that quantifies the 
local impact of livestock on forest C change by linking spatially 
explicit data, dynamic livestock modelling and farm surveys to re‐
mote‐sensing data for the region. The relationship between farming 
practices and forest C loss (at a distance of 5 km) was determined 
empirically (Brandt, Herold, et al., 2018) and should be taken with 
caution when extrapolating to other regions. This distance may de‐
pend on the region‐specific land use dynamics. Thus, more research 
is necessary to characterize local interactions between farms and 
forests using information on local farming practices and landscape 
configurations. Measurements obtained from grazing experiments 
for different forest and livestock types are required to estimate the 
direct impact of cattle on above‐ and below‐ground carbon stocks in 
forests (Schulz et al., 2016) and resulting GHG emissions. Livestock 
movement patterns can be traced through telemetry analyses to 
gain knowledge about distances that cattle walk and the time they 
spend inside forests (Gao, Kupfer, Zhu, & Guo, 2016). Aggregated 
spatially and temporally, this ground information could be used to 
calibrate and validate the estimates of forest C change related to 
livestock grazing derived from remote‐sensing data.

The increases of maize yields in this study were based on increased 
application rates of synthetic N fertilizer. Realizing the water‐limited 
yield potential of maize at 80% requires high N inputs of 69–185 kg N/ha 
(ten Berge et al., 2019; van Bussel et al., 2015). Fertilizer, transport and 
labour costs of high N application rates, however, may render the in‐
tensification of feed production economically unfeasible or simply un‐
attractive for smallholder farmers, if economic returns from milk sales 
do not justify these investments. Consequently, moderate application 
rates of synthetic fertilizer of 60–90 kg N/ha could be more realistic 
from a farmer's point of view in the Kenyan highlands (Mucheru‐Muna, 

TA B L E  3   Calculation of land footprint (ha) as the amount of land to produce the concentrates for dairy cows under the baseline and 
medium (FoCo and FeCo) and high intensification scenarios (FoFeCo). The land footprint accounts for the composition of the concentrates, 
with the ingredients from Weiler et al. (2014)

Ingredientsa

Yieldb Area Baseline FoCo and FeCo FoFeCo

t/ha ha Tonnes ha Tonnes hac Tonnes hac

Rice bran 2.68 97,659 16,965 6,330 218,123 75,059 436,246 156,448

Lime 10.78 1,693 2,513 233 32,315 2,764 64,629 5,762

Wheat grain 1.93 85,732 16,965 8,790 218,123 104,227 436,246 217,244

Maize 1.52 2,092,459 16,965 11,161 218,123 132,341 436,246 275,843

Sunflower cake 0.97 11,840 3,142 3,239 40,393 38,404 80,786 80,046

Cotton seed cake 0.50 25,980 6,283 12,567 80,786 149,006 161,573 310,578

Total  2,315,363 62,834 42,321 807,863 501,800 1,615,726 1,045,921

aComposition of concentrates includes 27% rice bran, 4% lime, 27% wheat, 27% maize, 5% sunflower cake and 10% cotton seed cake. 
bYields and areas harvested for the whole Kenya from FAOStat (2019). Rice bran imported from Uganda; the rest of the ingredients produced in 
Kenya. 
cArea calculated as the area required to produce the tonnage of ingredients, minus the area allocated in the baseline. 
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Mugendi, Kung'u, Mugwe, & Bationo, 2007; Mucheru‐Muna et al., 
2014). Therefore, reliable market prices for milk and improved access 
to markets are required for smallholders to adopt practices, which aim 
at closing the yield gap of crops such as maize. To increase the adoption 
of practices that improve the quality of dairy feeds, assessments of 
agricultural productivity and climate change mitigation have to be cou‐
pled with cost‐benefit analyses that take into account seasonal varia‐
tion of costs and returns and farm distance to markets to find optimal 
cost‐benefit ratios for smallholder farmers (Kibiego, Lagat, & Bebe, 
2015). Moreover, apart from abiotic and biotic factors such as climate, 
soils and cultivar traits, crop management practices determine the 
potential to improve maize yields (Kiboi et al., 2017; Rattalino Edreira  
et al., 2018). Hence, the dissemination of tailored knowledge about 
best practices in a certain farming context through agricultural exten‐
sion or web and mobile‐based information services are crucial.

Greater efforts to intensify smallholder agriculture sustainably have 
to be undertaken by agricultural development programmes to improve 
crop and livestock yields and to achieve food security in SSA (van 
Ittersum et al., 2016). More food produced from existing agricultural 
land will be required to feed the continent's fast growing human popu‐
lation. Considering the shrinking of farm sizes and the increasing short‐
age of arable land in SSA (Vanlauwe et al., 2014), research at landscape 
level has to be strengthened to explore the boundaries within which 
smallholder agriculture can be intensified sustainably to safeguard food 
security. This study estimated high emissions from C leakage effects 
that could result from the displacement of GHG emissions due to the 
increased demand for dairy concentrates, which could trigger cropland 
expansion into natural ecosystems outside the dairy production area as 
indicated by other studies (Styles, Gonzalez‐Mejia, Moorby, Foskolos, & 
Gibbons, 2018). To account for the increased demand of land, we cal‐
culated the land footprint due to the amount of concentrate required 
across scenarios. This measure is only an indication of the displacement 
of C emissions that could arise from the feed intensification explored 
here. The estimated land requirement indicates a 10%–20% increase in 
the amount of land (0.5–1.1 million ha) currently dedicated to feed the 
dairy cows in the study area, which would be a risk for C leakage. We 
estimate that cropland expansion into Kenyan forests to produce the 
ingredients for concentrates could produce GHG emissions equivalent 
to two‐ to fourfold the annual emissions from the whole agricultural 
sector. Because forest policies are likely to become more stringent in 
the future, it is more likely that the demand of concentrates is met by 
intensifying the use of croplands and grasslands.

To properly capture off‐farm C emissions there is a need for a de‐
tailed mapping of the concentrate value chain and a consequential life 
cycle assessment as applied in the case study of Styles et al. (2018). 
The market‐oriented stimulation of the agricultural sector could lead 
to rebound effects due to reduced production costs, higher demand 
and, therefore, increasing production (Kreidenweis et al., 2018; Valin 
et al., 2013). A higher demand for grain‐based concentrates may spark 
the land use competition to cultivate livestock feeds versus food, es‐
pecially without closing yield gaps. Thus, analyses of AFOLU mitigation 
need to integrate effects along supply chains, and aggregate effects 
from farm, and landscapes to the sectoral level. Such assessments 

should be coupled with economic models to provide estimates of ef‐
fective mitigation potentials by incorporating feedbacks between mar‐
kets and agricultural development.

5  | CONCLUSIONS

Improving the quality of dairy feeds can have climate change mitiga‐
tion benefits for agriculture and forests and can contribute to food 
security by increasing milk yields in Kenya. Closing the yield gap of 
maize could increase the adoption of better feeding practices, and 
can reduce GHG emission intensities from milk production and the 
loss of C in local forests. The largest mitigation benefits across land 
use sectors could be achieved by improving forage quality by feeding 
more African Napier grass to cows and supplementating concentrates. 
There might be additional risks of LUC associated with the produc‐
tion of concentrates that deserve to be studied in more detail. These 
findings emphasize the importance of assessing the impact of specific 
CSA practices prior to their recommendation for climate mitigation 
programmes. Targeting and prioritization at high spatial resolution to 
identify mitigation potentials across land use sectors can reveal im‐
plementation constraints such as land availability. Top–down assess‐
ments conducted at coarse continental scales do not capture local 
and landscape level contexts, which may render the implementation 
of targeted interventions unfeasible or may reduce the effectiveness 
of mitigation outcomes. Integrated mitigation and development policy 
frameworks and climate financing instruments could benefit from the 
approach presented here to prioritize the most effective CSA practices 
and to invest into options that show the most promising potentials for 
sectoral development and climate change mitigation.
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