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A B S T R A C T

Increasing demand for food and the shortage of arable land call for sustainable intensification of farming,
especially in Sub-Saharan Africa where food insecurity is still a major concern. Kenya needs to intensify its dairy
production to meet the increasing demand for milk. At the same time, the country has set national climate
mitigation targets and has to implement land use practices that reduce greenhouse gas (GHG) emissions from
both agriculture and forests. This study analysed for the first time the drivers of forest disturbance and their
relationship with dairy intensification across the largest montane forest of Kenya. To achieve this, a forest
disturbance detection approach was applied by using Landsat time series and empirical data from forest dis-
turbance surveys. Farm indicators and farm types derived from a household survey were used to test the effects
of dairy intensification on forest disturbance for different farm neighbourhood sizes (r= 2–5 km). About 18% of
the forest area was disturbed over the period 2010–2016. Livestock grazing and firewood extraction were the
dominant drivers of forest disturbance at 75% of the forest disturbance spots sampled. Higher on-farm cattle
stocking rates and firewood collection were associated with 1–10% increased risk of forest disturbance across
farm neighbourhood sizes. In contrast, higher milk yields, increased supplementation with concentrated feeds
and more farm area allocated to fodder production were associated with 1–7 % reduced risk of forest disturbance
across farm neighbourhood sizes. More intensified farms had a significantly lower impact on forest disturbance
than small and resource-poor farms, and large and inefficient farms. Our results show that intensification of
smallholder dairy farming leads to both farm efficiency gains and reduced forest disturbance. These results can
inform agriculture and forest mitigation policies which target options to reduce GHG emission intensities and the
risk of carbon leakage.

1. Introduction

Poor management of agricultural land and forests leads to defor-
estation and land degradation worldwide. The expansion of smallholder
agriculture is one of the main drivers of deforestation in Sub-Saharan
Africa (SSA) (Hosonuma et al., 2012). Such unsustainable land uses
cause greenhouse gas (GHG) emissions and affect adversely ecosystem
services such as soil carbon (C) sequestration and biodiversity (Barlow
et al., 2016; Grassi et al., 2017; Herrero et al., 2016). Rising human
population in many SSA countries has increased the demand for food
and reduced the availability of arable land (Carter et al., 2017). Thus,
climate–smart practices are required to intensify production on small-
holder farms sustainably, which improve food security and contribute

to climate change mitigation.
Recently, an intensification trend of smallholder farming has been

documented for the East African highland regions, particularly in Kenya
(Herrero et al., 2014). However, in the past large parts of the Kenyan
montane forests have been converted to agricultural land. Remaining
forests are threatened by ongoing anthropogenic disturbance causing
GHG emissions from forests. The land use, land use change and forestry
(LULUCF) sector contributes about 38% to total GHG emissions in
Kenya (Government of Kenya, 2015b). Three quarters of forest-related
GHG emissions result from small-scale forest disturbances such as
fuelwood extraction, selective logging and wildfires (Pearson et al.,
2017). Thus, mitigation efforts to effectively reduce these emissions are
required. Kenya has committed to the United Nations framework
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convention on climate change (UNFCCC) defining mitigation targets in
its nationally determined contribution (NDC) (Government of Kenya,
2015a). However, mitigation planning at national level is separated in
land use sectors, i.e. agriculture and forests, which is likely to render
the reduction of GHG emissions ineffective. Quantifying the relation-
ship between agricultural land use practices and forest disturbance
could be used to develop integrated mitigation approaches that mini-
mize the risk of spillover effects such as C leakage (Minang and van
Noordwijk, 2013).

The Mau Forest located in the Kenyan highlands is the largest re-
maining montane forest complex in East Africa. The forest plays an
important role as water tower for the whole region as it is the head-
water area for 12 major rivers supplying freshwater to about 5 million
people (Jacobs et al., 2017). The unsustainable use of the forest leads to
disturbances that impair ecosystem services such as C storage, fresh-
water supply and biodiversity (Kinyanjui, 2011). To date, forest dis-
turbance and its main drivers have not yet been quantified or char-
acterized, neither for Kenya’s forests nor for the Mau Forest, in
particular.

The Mau region is dominated by smallholder crop-livestock pro-
duction (Robinson et al., 2011). Smallholders throughout the highlands
commonly engage in dairy farming contributing about 80% to Kenya’s
total milk production (Udo et al., 2016). Increasing the productivity of
smallholder dairy farming throughout East Africa is promoted by sev-
eral agricultural development programs to meet the demand for dairy
products (Government of Kenya, 2010). Sustainable intensification of
agricultural production is urgently required to improve the livelihood
of smallholder farmers and is often reported as a promising measure to
achieve climate mitigation targets (Campbell et al., 2014; Ortiz-
Gonzalo et al., 2017; Vanlauwe et al., 2014). Human presence in
landscapes that were formerly dominated by forests has been linked to
changes in forest cover in SSA (Ryan et al., 2017; Sassen et al., 2013).
However, an assessment of local human activities and their effects on
adjacent forests is missing. A quantitative analysis of the relationship
between specific practises of smallholder dairy farming and forest dis-
turbance is needed to assess whether intensification is sustainable be-
yond individual farms. This analysis is also needed and highly relevant
for other montane regions in East Africa that share comparable farming
and forests systems and are exposed to similar pressures due to the
increasing demand for food.

Intensification of smallholder dairy farming includes changes in
cattle management e.g. feeds and breeds which have the potential to
increase milk production (Rufino et al., 2009) and to reduce GHG
emissions per unit of product (Herrero et al., 2016, Udo et al., 2016). To
date, there are no comprehensive studies on the effects of intensifica-
tion in smallholder dairy farming on adjacent forests, which can un-
dermine the climate change mitigation effect of the farming practices
promoted (Brandt et al., 2018). This study aims to answer two ques-
tions. First, what are the dominant anthropogenic drivers of forest
disturbance across the Mau Forest? Second, what is the intensification
effect of smallholder dairy farming on forest disturbance? The approach
applied to answer these questions involved i) the quantification of
forest disturbance and the characterization of the dominant drivers
using a spatially-explicit framework to detect forest disturbance based
on a Landsat time series and forest disturbance surveys and ii) the es-
timation of intensification effects of smallholder farms on forest dis-
turbance based on empirically-derived farm indicators and farm types.

2. Methods

2.1. Study area

The Mau Forest is located in the Western highlands of Kenya (Fig. 1)
and represents the largest remaining Afromontane forest in the country
covering about 400,000 ha (Kinyanjui, 2011). It primarily consists of
broadleaf tree species and bamboo forests, the latter in regions above

2400m (Ng’eno, 1996). Large parts of forest have been converted to
agricultural land due to favourable biophysical conditions such as high
annual precipitation and well drained soils. The region is characterized
by high densities of human and livestock populations (Herrero et al.,
2014; Robinson et al., 2014). Apart from smallholder crop-livestock
production systems there are large-scale tea plantations (Baldyga et al.,
2008; Jacobs et al., 2017). The Mau Forest is used for fuelwood, for
livestock grazing and for timber production, which is mainly harvested
from tree plantations (Government of Kenya, 2009; Olang et al., 2011).

2.2. Analysis approach

The approach followed in this study is shown in Fig. 2. First, remote
sensing data were acquired and pre-processed. Data on farm practices
and forest disturbance were obtained through field surveys (Section
2.3). Second, forest disturbance was detected from remote sensing data
using the space time extremes and features (STEF, Hamunyela et al.,
2017) algorithm (Section 2.4). Third, farm indicators and farm types
were derived from farm survey data (Section 2.5). Fourth, the effects of
farm indicators and farm types on forest disturbance intensity were
modelled by using generalized linear mixed effect models (GLMMs)
(Section 2.6).

2.3. Acquisition and pre-processing of data

2.3.1. Remote sensing data
All available terrain-corrected (L1T) multi-spectral satellite images

(n= 639) acquired by Landsat 5-TM, Landsat 7-ETM+, and Landsat 8-
OLI sensors (Fig. 2, step 1) from January 2005 to December 2016 were
downloaded from the United State of America's Geological Survey
(USGS) Earth Explorer platform. The normalized difference moisture
index (NDMI, Jin and Sader, 2005) was computed from each image.
NDMI is sensitive to changes in canopy moisture. It was chosen as it is
known to discriminate well changes in tropical wet forests (DeVries
et al., 2015a). NDMI was used to study small-scale disturbance in an-
other Afromontane forest (DeVries et al., 2016). Clouds and cloud
shadows were masked using the cmask algorithm (Zhu et al., 2015).

A benchmark forest mask was created (Fig. 2, step 1) to constrain
the forest disturbance detection algorithm to forested areas. Clouds and
cloud shadows were masked in the available Landsat spectral band
images from 2009. Gaps were filled by mosaicking the images. A
random forest model (Breiman, 2001) was trained to classify the study
area into forest and non-forest regions using all Landsat spectral bands
as predictors. The model was trained on randomly sampled polygons
maintaining equal sample sizes (n=40) for both classes each con-
taining at least 10,000 Landsat pixels. This training dataset was ob-
tained by visual interpretation of very high resolution Google Earth
imagery. Forest patches smaller than 0.5 ha were excluded from the
forest mask to satisfy the minimum forest area criterion of the Food and
Agriculture Organisation (FAO) of the United Nations forest definition
(FRA, 2000).

A time series dataset of all pre-processed NDMI images was created.
In addition, tree plantation data (Government of Kenya, 2015c; Jacobs
et al., 2017) were used to exclude forest plantation areas from the forest
disturbance analysis. Monthly fire alert data (Giglio, 2015) from the
Moderate Resolution Imaging Spectroradiometer (MODIS, MCD14ML)
were used to determine the extent and proportion of burnt forests over
the monitoring period.

Seasonal variability influences vegetation dynamics across the study
area leading to fluctuating spectral signals which impair the accuracy of
forest disturbance detection algorithms (Hamunyela et al., 2016b). A
local spatial normalisation approach (Hamunyela et al., 2016a, 2017)
was used to reduce the effect of seasonality in the NDMI time series
(Fig. 2, step 2). The normalisation procedure was applied on each NDMI
image in the time series prior forest disturbance detection. The local
neighbourhood was defined using a spatially-moving window with a
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size of 15×15 Landsat pixels. Each centre pixel within the window
was divided by the 95th percentile computed from pixel values within
the window (Hamunyela et al., 2016b). A 15×15 pixel window was
deemed sufficient because forest disturbances in the study area occur at
small-scale.

2.3.2. Field data
Two field surveys were conducted between November and

December 2016 to collect information about smallholder farms (farm
survey) and forest disturbance (forest disturbance survey) in adjacent
forests by using open data kit (ODK) questionnaires (Fig. 2, step 3–4).
Sampling sites for each survey were selected based on a stratified
sampling design using spatially-explicit datasets on cattle density
(Robinson et al., 2014) and forest loss (Hansen et al., 2013). Forest loss
data were converted to forest disturbance density by using the kernel
density tool in ArcGIS 10.3. Cattle and forest disturbance densities were
reclassified based on quantile splits to derive six combinations of
sampling strata ranging from low cattle and forest disturbance density
to high cattle and disturbance density (Fig. S1). Circular sampling sites
(radius= 5 km) were placed into the sampling strata derived. Fur-
thermore, by ensuring a forest cover of 50% in each site and by ex-
cluding tree plantations (Fig. 1), the number of sampling sites was
constrained, which led to the selection of the following areas: A) South
Nandi Forest (n= 37 farms and m=36 disturbance spots sampled), B)
Western Mau Forest (n= 39, m=30), C) Eastern Mau Forest (n= 34,

m=32), D) South West Mau Forest (n= 35, m=44), E) Transmara
Mau Forest (n= 39, m=45), and F) Maasai Mau Forest (n= 32,
m=34). A minimum sample size of 30 farms and 30 forest disturbance
sports per site was targeted. Often, additional farm and forest dis-
turbance data could be obtained.

The farm survey was conducted to gather information on cattle
numbers, milk yields, feed types, farm area allocated to fodder pro-
duction, farm size, and amount of firewood collected from the forest.
Farms were sampled based on locations randomly selected within each
sampling site (n= 216). The forest disturbance survey characterized
disturbance spots sampling randomly forest loss pixels derived from
Hansen et al. (2013) that were still forest according to the forest mask
created (n=221) to avoid the sampling of deforested land. During this
survey, information on disturbance types such as cattle grazing, fire-
wood extraction, wildfires, and charcoal burning was collected. In this
analysis, forest disturbance is defined as negative change in canopy
cover over time directly or indirectly induced by anthropogenic activ-
ities. A detailed list of variables collected during the surveys is available
in the supplementary information (Table S1 - 2). The field data gath-
ered from this forest disturbance survey were used, in combination with
additional forest disturbance data collected during a previous forest
disturbance survey (n=127). The later survey was conducted in the
Mau Forest between March and April 2016 (Bewernick, 2016), to va-
lidate an earlier forest disturbance detection in a sub-region of the study
area.

Fig. 1. The study area of the Mau Forest complex in Kenya. Circles and letters indicate sampling sites selected to conduct farm and forest disturbance surveys: A)
South Nandi Forest, B) Western Mau Forest, C) Eastern Mau Forest, D) South West Mau Forest, E) Transmara Mau Forest, and F) Maasai Mau Forest.
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2.4. Forest disturbance detection, calibration and classification

Forest disturbances were detected by using the STEF algorithm
(Hamunyela et al., 2017). STEF detects forest disturbances as extreme
events in local data cubes of satellite-derived time series (Fig. 2, step 2).
A local data cube was defined around each pixel containing both spatial
and temporal extents which are user-defined (Hamunyela et al.,
2017).The temporal extent corresponded to the full length of the NDMI
time series. A moving spatial window of 9× 9 Landsat pixels was used
as the spatial extent of the local data cube. STEF takes the spatio-
temporal context of an observation into account to reduce the sensi-
tivity to data noise, e.g. introduced by cloud remnants increasing the
algorithm’s accuracy (Hamunyela et al., 2016b, 2017). Extreme events
are identified as abnormally low observations in the monitoring period,
by using an extreme value approach (Zscheischler et al., 2013). A pixel
was considered abnormally low if its value was below the threshold
computed from spatio-temporal observations in the history period of
the local data cube. The history period of the time-series analysis was
defined from 2005 to 2009 and the monitoring period was set to
2010–2016. Following an application of STEF on Afromontane forests
in Ethiopia (Hamunyela et al., 2017), the 5th percentile was chosen as
the anomaly threshold. A pixel was flagged as potentially disturbed if
the algorithm detected two consecutive anomalies in the monitoring
period. Once consecutive anomalies are detected, STEF extracts 17
space-time features from the local data cube (Hamunyela et al., 2017).
The features include information on the proximity of the extreme event

to forest edges, existence and number of anomalies in the neighbour-
hood of the pixel where the extreme event is detected, and the spatial
variability across the local data cube at the time step where a potential
forest disturbance is detected (Hamunyela et al., 2017). These space-
time features were subsequently used to confirm forest disturbances.

Forest disturbance was confirmed by first calculating the probability
for forest disturbance by using the extracted space-time features as
predictors of forest disturbances (Hamunyela et al., 2017). The prob-
ability of disturbance was calculated by using a trained random forest
model. Random forest classifiers have the advantage to be of non-
parametric nature and can handle many predictors without overfitting
(Breiman, 2001). The random forest model was trained by using a ca-
libration dataset (n=204) acquired through visual interpretation of
multispectral Landsat images (Fig. 2, step 3), complemented by very
high resolution imagery available in the Google Earth, based on
methodology proposed by Cohen et al. (2010). A stratified random
sampling design was used to derive the calibration data. The magnitude
of change, which is one of the features extracted by STEF indicating the
deviation between detected anomaly and the 95th percentile of the
history distribution, was used to stratify the map of potential dis-
turbances, produced from STEF. The magnitude of change was sampled
randomly along the quantiles to derive four strata ranging from high to
low magnitude.

Moreover, ground-truth data (n= 348) from forest disturbance
surveys (Section 2.3.2) were used to determine the optimal probability
threshold (Fig. 2, step 3). A series of probability thresholds, ranging

Fig. 2. Flowchart of analysis steps followed in this study. Dark boxes represent data inputs from remote sensing and field observations. NDMI = normalized
difference moisture index, STEF = Space Time Extremes and Features approach, GLMMs = generalized linear mixed effect models.

P. Brandt et al. Agriculture, Ecosystems and Environment 265 (2018) 307–319

310



from 0 to 1 at an interval of 0.01 was created. Each probability
threshold was used to classify the probability values derived for the
ground-truth data into disturbed and undisturbed forest while calcu-
lating user's accuracy (UA= inverse of commission error) and produ-
cer's accuracy (PA= inverse of omission error). The probability
threshold that indicated the lowest area bias, which is the minimum
trade-off between commission and omission error was used to generate
the final forest disturbance map (DeVries et al., 2015b; Hamunyela
et al., 2017).

2.5. Defining farm types

Field data derived from the farm survey were used to cluster farms
(Fig. 2, step 4) into distinct types based on indicators that reflected
differences in the degree of intensification and which were expected to
influence the effect of dairy farming on the forest. Indicators chosen to
cluster the farms were: number of cattle, milk yields, proportion of
grass from on-farm pastures in the diet, farm area allocated to fodder
production, quantity of feed concentrates supplemented, farm size, and
amount of firewood collected. A correlation analysis was conducted
prior to the clustering to exclude highly correlated variables (Spear-
man’s rho> =0.7). The k-means partitioning algorithm was applied
in R to cluster the farms, after farm indicators were standardized, by
using the Euclidean distance measure (R Core Team, 2016). The
number of farm types was determined visually based on the drop in
intra-cluster variation as a function of increasing numbers of clusters
(Kassambara, 2017). In addition, farm types were tested regarding
differences in elevation and market access by using an elevation dataset
(Shuttle Radar Topography Mission, SRTM) and a proxy dataset in-
dicating travel time to cities with more than 50.000 inhabitants (Jarvis
et al., 2008; Uchida and Nelson, 2009). This analysis enabled an in-
terpretation of how the remoteness of farms affects intensification of
smallholder dairy production.

2.6. Modelling the effects of farms on forest disturbances

Using the raster package in R (Hijmans, 2016), circular distance
buffers with radiuses of 2, 3, 4, and 5 km were created around recorded
farm centroids, henceforth called farm neighbourhoods (Fig. 2, step 4).
The neighbourhood sizes were deemed to be appropriate to study the
effects of local farm practices and characteristics on forest disturbance
in forests adjacent to smallholder farms based on field observations and
interviews with local forest rangers from the Kenyan Forest Service. The
different neighbourhood sizes were chosen to assess the sensitivity of
farm-related effects on forest disturbance over discrete changes of
neighbourhood sizes through a sensitivity analysis. Two different re-
sponse variables were generated. First, the proportion of forest dis-
turbance pixels within each farm neighbourhood was calculated by
dividing the number of these forest pixels by the total number of forest
pixels. The proportion of forest disturbance pixels were used as a
measure of ‘disturbance intensity’. Second, forest disturbance sampled
and characterized during the forest disturbance survey were counted
within farm neighbourhoods to model farm effects on specific forest
disturbance types.

GLMMs were used by applying the lme4 package in R (Bates et al.,
2015) to model the association between farm characteristics and forest
disturbance intensities. The associations were interpreted as driver-re-
sponse relations, that is, farm characteristics were assumed to influence
disturbance intensities. Farm indicators, farm types, and farm distances
to the closest forest edge were included as fixed effects (explanatory
variables). A categorical variable, which represented the sampling sites
was included as a random effect. Binomial and Poisson GLMMs were
run for the proportional disturbance intensity and the counted forest
disturbance types derived from forest disturbance detection and survey
data, respectively. Different GLMMs were run for each farm neigh-
bourhood size separately (Fig. 2, step 4). Model evaluation and

selection was based on the Akaike information criterion (AIC) by ap-
plying likelihood ratio tests (Zuur et al., 2009). The model candidates
that showed the lowest AICs were chosen.

To understand the effects of farm indicators on forest disturbance
intensity derived from the binomial GLMMs, a relative risk measure was
used. The relative risk quantifies the likelihood of an outcome (forest
disturbance intensity), as a result of exposure to specific treatments
such as farm practices and farm characteristic represented by chosen
indicators (Akobeng, 2005). The effects of interactions between farm
types and farm distances to the closest forest edges were explored to
show potential differences of farm type effects along a farm distance to
forest gradient on forest disturbance intensity. To characterize the in-
fluence of farm types on certain types of forest disturbance, modelled
farm type effects on forest disturbance types observed during the survey
are shown.

3. Results

3.1. Forest disturbance across the Mau Forest

A lowest area bias of 0.7% was achieved at P=0.39 where the UA
was 77.9% and the PA was 78.6% (Fig. S2). Hence, the threshold of
0.39 was chosen as the probability threshold to classify each forest pixel
into disturbed and non-disturbed forest.

In total, 17.7% of the forested land was found to be disturbed be-
tween 2010 and 2016. The intensity of forest disturbance varied across
the Mau Forest complex with the largest impacts in central and
southern forest regions (Fig. 3). Forest disturbance also strongly dif-
fered between sampling sites. The proportions of disturbed forest de-
tected at the Western Mau Forest (42.4%) and the Maasai Mau Forest
(17.0%) were the largest (inset Fig. 3). With 3.9%, the South Nandi
Forest had the smallest proportion of disturbed forest.

3.2. Dominant drivers of forest disturbance across sampling sites

Firewood extraction and cattle grazing inside the forest were the
most dominant drivers of forest disturbance at all six sampling sites.
Firewood extraction was observed at 76% and cattle grazing at 75% of
all disturbance spots visited. Burnt tree stems were observed on 31% of
all spots sampled at four sampling sites, suggesting wildfires are an
important driver of disturbance. Wildfire events observed on the
ground were confirmed by MODIS fire alert data for three of the six
sampling sites, detecting wildfires at the Western Mau Forest, Eastern
Mau Forest, and Maasai Mau Forest at 25.6%, 1.5%, and 0.4% of the
forested land respectively (inset Fig. 3). The most common combination
of drivers observed on 48% of all visited spots was firewood extraction
and cattle grazing inside the forest (Fig. 4). This co-occurrence of dri-
vers was predominant across the sampling sites except for the Maasai
Mau Forest site where forest grazing and wildfire were found to co-
occur more often (Fig. 4).

3.3. Effects of farm indicators on forest disturbance intensity

Firewood collection rates, farm sizes, and cattle numbers were as-
sociated with a significantly increased risk of forest disturbance across
farm neighbourhood sizes by 3–10 %, 1–5 %, and 1–5 % respectively
(p < 0.001, Fig. 5). In contrast, higher milk yields were related to a
significantly lower risk of forest disturbance by 3–7 % across farm
neighbourhood sizes (p < 0.001, Fig. 5). Larger farm area allocated to
fodder production, increased supplementation of dairy concentrates
and higher proportion of grass from on-farm pastures in the diet were
associated with a significantly lower risk of forest disturbance by 2–5
%, 1–2 %, and 1–2 % in 3 (Fig. 5B, C, D), 2 (Fig. 5A, D), and 2 (Fig. 5C,
D) of the farm neighbourhoods respectively (p < 0.001). The risk of
forest disturbance intensities decreased significantly by 8–15 % across
all farm neighbourhood sizes (p < 0.001), when farms were located
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further away from the forest. In general, the effects of farm indicators to
increase or reduce disturbance risks remained relatively constant over
the different neighbourhood sizes. However, effects sizes of farm in-
dicators became smaller with increasing size of farm neighbourhoods
except for cattle numbers, which slightly increased the risk of forest
disturbance in larger neighbourhoods (Fig. 5). The variability around
the effects shown by their 95% confidence intervals was low across
farm neighbourhoods. For details on model selection see Table S3.

3.4. Farm types

Three farm types were inferred from the cluster analysis:’ small and
resource-poor farms’, ‘large and inefficient farms’ and ‘intensified

farms’. Small and resource-poor farms had the smallest mean sizes
(0.7 ± 0.6 ha, Fig. 6A), the lowest total number of cattle herds
(2.3 ± 1.8 heads, Fig. 6B) and the lowest number of dairy cattle
(0.5 ± 1.0 heads). The quality of cattle feed was low indicated by a
relatively low proportion of native grass from pastures in the diet
(72.7 ± 30.4%, Fig. 6C), little farmland allocated to grow higher
quality fodder (0.03 ± 0.04 ha, Fig. 6D) and the smallest supple-
mentation rate of concentrated feed (0.08 ± 0.11 kg cow−1 day−1,
Fig. 6E). Milk yields were the lowest (1.2 ± 1.4 kg cow−1 day−1,
Fig. 6F). Firewood collection rates were intermediate (36.5 ± 79.3 kg
week−1, Fig. 6G). In addition, the farm survey data show for this farm
type comparatively low proportions of farms with planted trees onfarm
pastures (13%), cropland (5%), farm boundaries (84%), and in

Fig. 3. Forest disturbance mapped for 2010–2016 across the Mau forest. Circles indicate sampling sites for the field surveys: A) South Nandi Forest, B) Western
Mau Forest, C) Eastern Mau Forest, D) South West Mau Forest, E) Transmara Mau Forest, and F) Maasai Mau Forest. Inset bar plot shows proportions of disturbed
forest area that was burnt and unburnt for each sampling site.

Fig. 4. Co-occurrence proportions of forest dis-
turbance drivers (%). Forest disturbance spots were
characterized during a forest survey at each sampling site:
A) South Nandi Forest, B) Western Mau Forest, C) Eastern
Mau Forest, D) South West Mau Forest, E) Transmara Mau
Forest, F) Maasai Mau Forest, and All) all sampling sites.
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woodlots (26%).
Large and inefficient farms had the largest mean sizes

(4.9 ± 5.5 ha) and cattle herds (14.0 ± 16.7 heads) combined with a
moderate number of dairy cattle (2.5 ± 11.4 heads). Feed quality was
low shown by the highest proportion of native grass from pasture in the
diet (86.5 ± 11.7%), little farmland allocated to grow high quality
fodder (0.10 ± 0.45 ha), and low supplementation rates of feed con-
centrates (0.11 ± 0.14 kg cow−1 day−1). Milk yields were only
slightly higher than those of the small and resource-poor farms
(1.8 ± 1.2 kg cow−1 day−1). Firewood collection rates for this farm
type were the highest (84.5 ± 160.6 kg week−1). The farm survey data
indicate that the proportions of farms with planted trees onfarm pas-
tures (16%) and cropland (6%), farm boundaries (78%), and in woo-
dlots (25%) were similar to those of the small and resource-poor farms.

Relatively more intensified farms had medium sizes (2.5 ± 2.1 ha),
moderate cattle head sizes (5.0 ± 2.9 heads) but the highest numbers
of dairy cattle (3.0 ± 3.5 heads). These farms had the best feed quality
indicated by a moderate proportion of native grass from on-farm pas-
tures in the diet (78.3 ± 16.4%), the largest farm area allocated to
fodder production (0.23 ± 0.55 ha), and high rates of concentrated
feed supplementation (0.9 ± 1.0 kg cow−1 day−1). Milk yields were
the highest (5.1 ± 2.2 kg cow−1 day−1). Firewood collection rates
were the lowest (31.2 ± 81.6 kg week−1). This farm type had the
highest proportions of farms with planted trees onfarm pastures (26%),
cropland (14%), farm boundaries (90%), and in woodlots (40%).

Large and inefficient farms were located at higher elevation and
show longer travel time to cities compared to small and resource-poor
farms and intensified farms (p < 0.001, Fig. 7A–B). Therefore, large

and inefficient farms were located more remotely and had less market
access.

3.5. Farm types and forest disturbance intensity

Farm types had a significant effect on forest disturbance intensity
(p< 0.05) for all farm neighbourhood sizes. Interactions between farm
types and farm distance to forest edges show that more intensified
farms had significantly smaller effects on the intensity of forest dis-
turbance than the small and resource-poor farms and the large and
inefficient farms for the different neighbourhood sizes (p<0.001,
Fig. 8). However, differences in effects between large and small farms
were not significant for the 4 km farm neighbourhood size (Fig. 8C). In
general, the effect of farm types on forest disturbance intensity became
smaller with increasing farm distance to the forest edges. For the 5km
neighbourhood size, effects of farm types were less distinguishable and
their slopes decreased (Fig. 8D), indicating that the influence of farm
types on forest disturbance intensity are more difficult to disentangle
from external effects. The 95% confidence intervals around the effects
indicate an increased variability of the interaction effects of farm types
along farm distance to forests across farm neighbourhoods. The lowest
variability of effects was shown for intensified farms in all farm
neighbourhood sizes. For details on model selection see Table S4.

Effects of farm types on the two most important forest disturbance
types (i.e. disturbance drivers) observed during the survey (Fig. 4) also
differ (Fig. 9). Intensified farms were associated with significantly
lower intensities of forest disturbance (p<0.05) where firewood col-
lection (Fig. 9A, C) and cattle grazing (Fig. 9D) were recorded,

Fig. 5. Relative risks of forest disturbance as response to farm indicators. Relative risks were derived from GLMMs for different farm neighbourhood sizes
(buffer radiuses): A) 2 km, B) 3 km, C) 4 km, and D) 5 km. Horizontal bars show mean effect and 95% confidence intervals for each indicator. Stars show significance
levels. Vertical dashed lines indicate no effect.
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compared to small and resource-poor farms as well as large and in-
efficient farms. An exception is shown for forest grazing within the 2 km
farm neighbourhood where large farms were associated with a sig-
nificantly higher disturbance intensity (p<0.05) than small and re-
source-poor farms and intensified farms (Fig. 9B). Results are only
shown for the 2 and 3 km farm neighbourhoods due to few disturbance
samples from the forest survey within the 4–5 km farm neighbourhoods
(Fig. 9D). The variability around the farm type effects was smallest for
intensified farms shown by 95% confidence intervals. For details on
model selection see Table S5.

4. Discussion

4.1. Drivers of forest disturbance in context

Forest disturbance across SSA is responsible for large parts of the
land-based GHG emissions (Bailis et al., 2015; Pearson et al., 2017). In
this study, the dominant drivers of forest disturbance were the extrac-
tion of firewood primarily used by local smallholder farmers living
adjacent to the Mau Forest and cattle grazing inside the forest as op-
portunistic feed resource for cattle owned by local smallholders (Fig. 4).
Grazing happens mostly on forest land opened through fuelwood ex-
traction or wildfires. Although grazing is not a primary driver of forest
disturbance in the montane forests studied, it prevents the regrowth of
woody vegetation, affects negatively C sequestration and, thus, reduces
the C sink capacity of forests (Samojlik et al., 2016). Wildfires occur

across the Mau Forest, often caused by human activities such as char-
coal production or attempts to clear forested land, which increase the
risk to spread fire during dry seasons.

Firewood extraction from forests partly covers the demand for
fuelwood, which is the main driver of small-scale forest disturbance in
SSA (Hosonuma et al., 2012). The high demand for fuelwood in East
African countries such as Kenya exceeds the supply capacity of forest
ecosystems (Mutoko et al., 2015). Therefore, Kenya is among the
countries that show the most unsustainable fuelwood production across
the tropics (Bailis et al., 2015). GHG emissions from fuelwood extrac-
tion and utilization in tropical forests account with 0.62 Gt CO2eq
year−1 for about one third of the forest emissions, compared to timber
production (1.09 Gt CO2eq year−1) and wildfires (0.35 Gt CO2eq
year−1) as estimated by Pearson et al. (2017). Livestock grazing in
forests is with 8% ranked as the third most important driver of dis-
turbance as estimated by Hosonuma et al. (2012) after fuelwood ex-
traction (58%) and timber production (33%) for SSA countries that are
in their late forest transition phase such as Kenya. In this study, forest
livestock grazing showed a more prominent role on forest disturbance,
as it occurred at all six sampling sites at 75% of all spots visited (Section
3.2). Forest disturbance spots located deep inside the forest were not
visited. It is likely that the intensity of forest grazing decreases further
inside the forest with limited access. In addition to negative effects of C
storage in forests, livestock grazing was shown to modify nutrient cy-
cles and to reduce species richness in forests (Close et al., 2008;
Denmead et al., 2015).

Fig. 6. Farm indicators used to cluster farm types. Farm types were (x-axes): small = small and resource-poor farms, large = large and inefficient farms,
intensified = intensified farms. Included indicators were: A) cattle numbers, B) milk yields, C) proportion of grass from on-farm pastures in the diet, D) farm area
allocated to fodder production, E) concentrate supplementation, F) farm size, and G) firewood collection. Different letters above whiskers indicate significant
differences between farm types by using pairwise Wilcoxon rank sum tests (p-values were corrected for multiple testing).
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4.2. Mitigation potential on forested and agricultural land

4.2.1. Intensification may reduce the impact of smallholder farms on forests
The increase in agricultural production in SSA has been mostly

achieved through expansion of agriculture into natural ecosystems,
including forests (Fisher, 2010). Increasing productivity without com-
promising environmental goals is required to meet future food demand
and to contribute to climate change mitigation (Smith et al., 2013). This
study shows that larger farms and higher cattle numbers increased the
risk of forest disturbance by 1–5 % (Fig. 5). Higher firewood collection
rates had an even stronger impact on the forest increasing the risk of
disturbance by 3–10 % (Fig. 5). On the contrary, higher milk yields
decreased these risks by 3–7 % (Fig. 5). The effects of indicators related
to feed intensification such as larger farm area allocated to fodder
production, supplementation of dairy concentrate and increased pro-
portion of grass in the diet were less pronounced. These indicators re-
duced the risk of forest disturbance by 1–5 % (Fig. 5). The results in-
dicate that farms which own more cattle and collect more firewood are
likely to cause more disturbance in the nearby forest than more in-
tensified farms with high milk productivity and improved feed quality.
The analysis of farm type effects on forest disturbance confirmed this
pattern. More intensified farms had a lower impact on forests in general
but also on disturbance caused by firewood extraction and livestock
grazing in particular (Figs. 8 and 9). Compared to small and resource
poor farms and large but inefficient farms, intensified farms planted
more trees on farmland (Section 3.4) e.g. in woodlots or on farm
boundaries. These trees represent fuelwood sources available on-farm
(Mbow et al., 2014), potentially translating into lower firewood ex-
traction from the forest (Fig. 6G). Small farms that lack resources such
as land and access to higher quality feeds, and large but inefficient
farms with many low productivity cattle (Fig. 6A–F) increase the risk to
remove biomass from local forests unsustainably by exceeding the re-
growth rates. Yet, effect sizes of farm indicators and differences among
the effects of farm type on forest disturbance were, despite significant,
relatively small. The inefficiency of large farms is likely related to their
location at higher elevation (Fig. 7). Remoteness and lack of

infrastructure result in reduced market access for these farms, rendering
it more difficult for smallholders to buy higher quality feeds and feed
supplements, and to sell the milk produced (Makoni et al., 2014).

The effects of dairy production and intensification on local forests
can be quantified by relating farm practices and characteristics to forest
disturbance patterns. Including farm-related activities outside the farm
boundaries that affect the broader landscape is relevant to assess the
effectiveness and sustainability of policies that target climate change
mitigation and food security (DeFries and Rosenzweig, 2010). Potential
spill over effects can be revealed, causes be identified and the risk of C
leakage be minimized.

4.2.2. Increase of farm efficiency and on-farm tree cover
Dairy production in SSA shows the highest GHG emission intensities

compared to dairy production in other continents which points to low
efficiency of smallholder dairy production (Gerssen-Gondelach et al.,
2017). Mitigation and development policies seek for ‘win-win’ situa-
tions where increased farm production goes hand in hand with the
avoidance of additional GHG emissions (Brandt et al., 2018). Low
quality feed from natural pastures and from opportunistic cattle grazing
inside the forest result in low milk yields and high GHG emission in-
tensities (Lukuyu et al., 2012). Increasing milk yields on smallholder
farms can be achieved through feed intensification by improving the
protein and energy density in feeds (Agle et al., 2010; Trupa et al.,
2015). The intensified farm type showed the highest milk yields
(Fig. 6F). The quality of feed that is either grown on-farm such as fodder
grasses or supplemented as concentrated feed such as dairy meals was
also highest for intensified farms compared to the other two farm types
(Fig. 6D–E). Perennial fodder grasses such as Napier grass show high
potential for feed intensification as it has a higher quality than native
grass from pastures and is widely accepted by smallholders across the
Kenyan highlands (Katiku et al., 2011). Higher supplementation of
concentrates during lactation periods was related to the increase in milk
yields in this study (Fig. 6E) and was also reported to improve milk
yields in Kenya (Rufino et al., 2009; Richards et al., 2016).

However, C leakage emerging from intensification processes have to
be considered. Feed imports from other regions or countries may raise
due to feed intensification if the increased demand of higher quality
feeds cannot be covered locally (Meyfroidt et al., 2014). GHG emissions
from indirect land use changes due to agricultural expansion could be
the consequence. Styles et al. (2017) conducted a life cycle assessment
(LCA) of dairy intensification in the United Kingdom showing possible
cascade effects of pasture-crop displacement and expansion of pastures
that lead to deforestation in Brazil. Therefore, appropriate mitigation
policies and funding schemes need to integrate measures (e.g. protocols
on land use legacies, certification) that enable feed production which
does not undermine effective climate change mitigation.

Depleted soils due to nutrient mining is a common reason for
stagnating or falling crop yields in Kenya (Tittonell et al., 2010). In-
creasing the efficiency of nutrient cycling through improved manure
management can increase soil fertility and crop yields as shown by
Castellanos-Navarrete et al. (2015) for smallholder crop-livestock pro-
duction systems in Kenya. Closing the yield gap is especially important
for small farms that lack land to grow fodder. Furthermore, intensified
farms had less cattle than large and inefficient farms (Fig. 6B, F), and
instead owned more improved breeds (Section 3.4). Reduced stocking
rates with higher herd efficiency and the replacement of local cattle
with improved breeds that produce more milk accompanied by better
access to animal health services are additional factors to increase the
efficiency of milk production and to reduce GHG emission intensities on
smallholder dairy farms in Kenya (Bryan et al., 2013; Mottet et al.,
2016). Adopting the dairy hub model, developed by the East African
dairy development program (EADD), could facilitate the improvement
of market access. This can be achieved by infrastructure funds and by
linking the different actors throughout the dairy value chain such as
dairy farmers, feed producers and dairy companies (EADD, 2014).

Fig. 7. Elevation and remoteness of farm types. Boxplots show A) elevation
and B) travel time to cities by farm type: small = small and resource-poor
farms, large = large and inefficient farms, intensified = intensified farms).
Different letters above whiskers indicate significant differences between farm
types by using pairwise Wilcoxon rank sum tests (p-values were corrected for
multiple testing).
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Agroforestry could increase the C sequestration potential of small-
holder farms in the tropics and offset GHG emissions resulting from
agricultural production (Abbas et al., 2017; Mutuo et al., 2005; Ortiz-
Gonzalo et al., 2017). Kenya’s target to increase the tree cover from
about 6% in 2000 to 10% by 2030 is the policy frame to improve the
tree cover on farm land (Government of Kenya, 2015a). However, be-
tween 2000 and 2010, the tree cover on farm land in Kenya on average
increased by about 1% (Zomer et al., 2016). Thus, incentives such as
climate financing schemes are required to encourage smallholder
farmers to plant trees on their farms which could be used as fodder trees
or as fuelwood source. Moreover, more efficient cooking stoves would
reduce the demand of fuelwood and indoor air pollution translating
into health improvements (Malla et al., 2011). Improved forest man-
agement that actively involves local communities could enable the
sustainable use of forest resources e.g. by establishing regulated wood
pastures located at the forest edges or tree plantations used for a cer-
tified fuelwood production (Börner and Wunder, 2012; Chidumayo and
Gumbo, 2013; Mutoko et al., 2015).

4.3. Limitation and benefits of the approach

This is the first study that combines a remote sensing approach with
an analysis of farm production to investigate the connection between
dairy production and forest disturbance in Africa. It is also one of the
first studies that applied a forest disturbance detection approach uti-
lizing the spatio-temporal information from Landsat time-series
(Hamunyela et al., 2017). The approach was shown to outperform
change detection based on temporal information only in terms of ac-
curacy especially in environments where forest disturbances occur
mainly at small-scale (Hamunyela et al., 2016b, 2017). The spatial
accuracy achieved here (UA = 77.9%, PA = 78.6%) is comparable to
Hamunyela et al. (2017) who studied small-scale disturbances in the
Ethiopian highlands (UA = 76.8%, PA = 78.3%). By reducing false
detections of small-scale disturbances, STEF could improve national
forest monitoring capabilities especially in regions where these dis-
turbance patterns are dominant such as in many SSA countries (DeVries
et al., 2015b). The spatial resolution of Landsat sensors limits the

Fig. 8. Effects of farm types on forest disturbance intensity. Effects of farm types interacting with farm distance to forest edges were derived from GLMMs for
different farm neighbourhood sizes (buffer radiuses): A) 2 km, B) 3 km, C) 4 km, and D) 5 km. Shaded areas indicate 95% confidence intervals for each farm type
(small = small and resource-poor farms, large = large and inefficient farms, intensified = intensified farms).
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detection of small-scale disturbances. However, new satellite systems
such as the Sentinal platform bears high potential for forest monitoring
applications due to increased spatial and temporal resolution (Mitchell
et al., 2017).

Training and validation data obtained from the ground are neces-
sary to improve the detectability of forest disturbances even more so if
they occur at small-scale and visual interpretation methods based on
high resolution satellite imagery become unsuitable. Involving local
experts into the monitoring can enhance the validity of detected
changes and enable the characterization of their drivers e.g. through
community-based forest monitoring integrating remote-sensing and
smart phone technologies (DeVries et al., 2016).

Higher variability in the effects of farm type on forest disturbance
reflected uncertainties that were introduced through the clustering of
farm types by using farm survey data. Such uncertainties have to be
reduced to improve the quantification of agricultural drivers and GHG
emissions resulting from forest disturbance – e.g. through comprehen-
sive measuring and reporting efforts.

5. Conclusion

This study revealed that the main anthropogenic drivers of forest
disturbance across the Mau Forest are extraction of firewood and cattle
grazing inside the forest. Both drivers are related to farm practices and

characteristics of local smallholder farms. Intensification of smallholder
dairy farming was associated to a lower risk of forest disturbance. Less
forest disturbance translates eventually into reduced GHG emissions
from forests. Thus, these results are informative for policy formulation
and decision-making targeting mitigation options that increase farm
efficiency and minimize negative effects on forests at the same time.

Incentive-based climate financing instruments are required for sta-
keholders such as farmers, cooperatives and the private sector involved
in dairy production. These funds could be accessed once certain criteria
are fulfilled such as the implementation of on-farm practices such as
feed intensification that mitigate direct and indirect GHG emissions and
increase farm productivity. A nationally appropriate mitigation action
(NAMA) currently in development for the dairy sector in Kenya offers a
promising policy framework to develop low emission dairy production,
including capacity development and investment support targeting
about 2 million smallholder households. However, assessments and
criteria that minimize the risk for carbon leakage through indirect land
use changes have to be integrated into policy development to achieve
effective mitigation in the land use sector.

Based on the key results, policy recommendations are: i) reducing
the emission source potential of agriculture through the increase of
production efficiencies on dairy smallholder farms and through the
improvement of their offsetting potential (i.e. the increase of tree cover
on farmland) and ii) enhancing the C sink potential of forest systems by

Fig. 9. Farm types effects on forest disturbance types. Effects of farm types are shown for firewood collection (A, C) and cattle grazing in the forest (B, D)
modelled for the 2 and 3 km farm neighbourhood sizes. Different letters above bars indicate significant differences between farm types (small = small and resource-
poor farms, large = large and inefficient farms, intensified = intensified farms). Vertical bars indicate 95% confidence intervals.

P. Brandt et al. Agriculture, Ecosystems and Environment 265 (2018) 307–319

317



minimizing forest disturbances through sustainable intensification of
farming and improved forest management.
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