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A B S T R A C T   

Efforts to reduce emissions from deforestation and forest degradation and enhancing forest carbon stocks 
(REDD+) have evolved over the past decade. Early REDD+ programs and local/subnational projects used 
various interventions (i.e. enabling measures, disincentives and incentives), implemented by government, the 
commercial and non-commercial private sector, but are currently understudied vis-à-vis their effectiveness to 
address site-specific drivers of deforestation and forest degradation (DD). We assess how well REDD+ inter
ventions addressed DD at five project sites in Peru (1), Brazil (1), Vietnam (1) and Indonesia (2). Our study 
design includes an integrated assessment of remotely sensed, spatially modelled, and locally reported drivers. 
First, we observe follow-up land use from high resolution imagery as proxy for direct deforestation drivers. 
Second, spatial Random Forest modelling of DD drivers allows for influence quantification of topographic, cli
matic and proximity variables at each site. Third, we report direct and indirect DD drivers from pre-intervention 
surveys and semi-structured interviews with five REDD+ implementers, 40 villages and 1200 households. Data 
gathered included perceived changes in forest cover and quality, and their causes. We found general agreement 
between observed, modelled and reported local DD drivers, yet some were inadequately addressed by inter
ventions. Intra-site differences in drivers underscores the importance of analysing micro-level DD drivers. Our 
interdisciplinary approach reveals the complexities of local direct and indirect DD drivers, and the com
plementarity of remotely sensed, spatially modelled and locally reported methods for driver identification. A 
better understanding of the alignment between DD drivers and REDD+ interventions is vital for practitioners 
and policy makers to enhance the effectiveness, efficiency, equity and co-benefits of REDD+ at the local level.   

1. Introduction 

Deforestation and other land use changes contribute significantly to 
carbon emissions (IPCC, 2006). Efforts to reduce emissions from defor
estation and forest degradation and to enhance carbon stocks (REDD+) 
were embedded in the Paris Agreement (UNFCCC, 2015). To design ef
fective policies, it is important to know: what land use change activities 
are happening; who are the agents linked to these changes; and what 
underlying forces are at play? 

Numerous conceptual models can be used to understand the drivers 
of deforestation and forest degradation and their interactions. Geist and 
Lambin (2002) focus mainly on distinguishing proximate (direct) and 
underlying (indirect) causes, whereas Wood and Porro (2002) put more 

emphasis on the distinction between biophysical and socioeconomic 
factors at different spatial scales. The approach of Kaimowitz and 
Angelsen (1998) is more similar to Geist and Lambin’s, although the 
focus differs by concentrating on the economics behind the immediate 
and underlying factors. It is important to monitor drivers of defor
estation and forest degradation (DD) at the local level because they 
differ across space and time (Rudel, 2007; Rudel et al., 2009; Defries 
et al., 2010; Hosonuma et al., 2012; De Sy et al., 2015; Curtis et al., 
2018). 

The methods to assess drivers are nested in different scientific dis
ciplines. They range from visual assessment of land use, land cover, and 
changes therein (LULCC) (e.g. De Sy et al., 2015), socioeconomic survey 
data collected in the field (e.g. Walker et al., 2002), to machine learning 
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techniques assessing the relative importance of spatial factors ex
plaining land cover change (e.g. Zanella et al., 2017). Each of these 
methods has its strengths and weaknesses in terms of the driver ele
ments (e.g. agent, location, extent) that it can accurately assess. Re
motely sensed imagery can help to identify the land cover following 
deforestation, which can then be used as proxy for the direct driver (De 
Sy et al., 2015). Recent technical innovations in remote sensing and 
forest-relevant monitoring techniques have resulted in national and 
global datasets with increasing levels of coverage, spatial and temporal 
detail and accuracy (Bos et al., 2017), which can capture changes in 
forest cover, including land uses following deforestation. Socio
economic data can complement these remote sensing techniques in 
helping to identify the agents or underlying factors at play. Spatial 
modelling with machine learning techniques, such as Random Forest 
modelling, provide powerful tools to reveal underlying spatial factors 
influencing DD. When used in isolation, however, they lack the ability 
to provide a meaningful interpretation of these results. Rather than 
compare the capabilities of each of the methods, we argue that an as
sessment of their complementarity is more valuable as combined, in
terdisciplinary approaches provide better understanding of the pro
cesses at stake than single-source approaches. 

Information on drivers can help determine the appropriate policy 
interventions to address those change processes (Finer et al., 2018). As 
the activities leading to DD differ between continents and countries 
(Hosonuma et al., 2012; De Sy et al., 2015), there is no single inter
vention to address all drivers effectively (Seymour and Harris, 2019). 
Similarly, REDD+ interventions vary greatly in terms of type and im
plementer. Ideally, interventions are tailored to the local context 
(Godar et al., 2014; Austin et al., 2019), which requires an integrated 
assessment of relevant drivers. Information on drivers is therefore 
beneficial in all stages of the REDD+ design, implementation and 
evaluation (De Sy et al., 2018). Incorporating this type of information is 
not straightforward, however, as recurrent monitoring is complex and 
costly. 

The objectives (i.e. linkages between the triangles in Fig. 1) of this 
study are, (1) to assess the complementarity of different data sources in 
providing DD drivers information; (2) to identify the most prevalent DD 
drivers in our study sites; and (3) to identify possible (mis)matches 
between the pre-identified DD drivers and REDD + interventions. The 
aim of this study is not to assess how successful these interventions are 
in addressing these DD drivers, as this requires an impact assessment, 
which goes beyond the scope of this study. In order to reach our ob
jectives, we will address the following research questions (i.e. the ele
ments within the triangles in Fig. 1):  

1 To which land cover and land uses are forests converted, based on 
high resolution imagery?  

2 What are the most important topographic, climatic and proximity 
variables explaining deforestation, based on a Random Forest 
Model? 

3 What are the dominant locally reported direct and indirect DD dri
vers, based on household, village, and key informant interviews? 

4 Which DD activities and agents are targeted by the REDD+ inter
ventions? 

2. Materials & methods 

2.1. Conceptual framework 

Fig. 2 shows the conceptual framework of this study, which builds 
upon existing LULCC models as discussed in the previous section, but 
puts the activity inducing DD at the centre. In this way, we provide a 
holistic approach that can be used in both spatial and non-spatial as
sessments. 

In our conceptual model, drivers are defined as the interplay of 
agents, land activities and underlying forces that lead to DD. Agents 
refer to entities performing land activities on the ground and include 
smallholders and communities, large agricultural land holders, large 
scale agribusinesses and logging or mining companies. Activities are 
human actions that lead to forest change (e.g. agricultural expansion, 
logging, infrastructure expansion) often referred to as direct drivers (see 
for example De Sy et al., 2018). Environmental factors consist of bio
physical or topographic elements that allow or limit certain activities 
(e.g. slope, availability of soil minerals, etc.) but which in essence 
cannot be influenced by humans through policies or other interven
tions. Underlying forces, such as economic and political processes, are 
often complex and can interact with each other. They directly or in
directly influence the decision-making of the agents (e.g. farmers, 
government agencies, agricultural or mining companies etc.) who are 
performing the activities. 

REDD+ interventions can be categorized into three types (i.e. en
abling measures, disincentives and incentives), which can be applied by 
different types of implementers (government, non-government, and 
private sector actors) at different levels (e.g. (sub)national programs vs. 
local level REDD+ projects). While incentives (e.g. payments for en
vironmental services) and disincentives (e.g. command-and-control 
measures) aim to change agents’ decision-making in terms of forest 
change activities, enabling measures (e.g. tenure clarification, en
vironmental education) can influence agents, and thus indirectly their 
activities, or underlying forces. 

2.2. Study areas 

In our study we focus on five sites, located in four countries in Latin 

Fig. 1. Relationship between research objectives (RO), and research questions (RQ).  
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America and Asia (Fig. 3, Table 1). These five sites are part of CIFOR’s 
Global Comparative Study on REDD+ (GCS REDD+), and were se
lected to represent a wide range of intervention types ((dis)incentives 
and enabling measures), implementer types (non-governmental orga
nizations (NGOs) and private sector), and geographies across the tropics 
(CIFOR, 2017). Further, data availability constraints concerning the 
availability of different forest change map products affected the final 
selection (Bos et al., 2019). The initiatives will be described in more 
detail in section 3.4. 

2.3. Summary of workflow 

The workflow of this study is visualized in Fig. 4. In this section, the 

elements are introduced briefly, and will be discussed in more detail in 
the following sections. 

This study consists of three parts, that is, assessments of (1) DD 
drivers, (2) REDD+ interventions, and (3) their alignment. The DD 
drivers analysis uses three methods which build upon different data 
sources. Here, insights from high resolution imagery, spatial modelling 
and socio-economic surveys jointly provide insights in the DD drivers of 
the study sites. The REDD+ intervention assessment builds upon vil
lage level survey data and a database containing information on REDD 
+ interventions in the different study sites. The DD drivers analysis 
formed the basis for the assessment of the complementarity of different 
(disciplinary) methods and datasets. Finally, we assessed the alignment 
of the REDD+ interventions with the DD drivers at the five sites. 

Fig. 2. Conceptual framework. Orange arrows represent interactions between different driver elements. Green arrows represent how different REDD+ interventions 
envision to influence these elements or its interactions. 

Fig. 3. Study areas.  

Table 1 
Site characteristics.          

Country Site Initiative area (in km2) 6 Area of interest (approximately, in km2)7 Ecozone (FAO) REDD+ start year REDD+ end year Implementer type  

Brazil Transamazon1 260 48,000 TRF8 2013 2017 NGO 
Peru Madre de Dios (MDD)2 3,088 11,000 TRF8 2009 Ongoing Private sector 
Indonesia KCCP3 144 20,000 TRF8 2008 Ongoing NGO 
Indonesia Katingan4 1,083 36,000 TRF8 2009 Ongoing Private sector 
Vietnam Cat Tien5 669 8000 TRF8/ TMDF9 2009 2012 NGO 

1 Sustainable Settlements in the Amazon (IPAM). 
2 REDD+ Project in Brazil Nut Concessions (BAM & FEPROCAMD). 
3 Ketapang Community Carbon Pools (FFI). 
4 Katingan Peatland Restoration & Conservation Project (PT.RMU). 
5 Cat Tien National Park Pro-Poor REDD+ Project (SNV). 
6 As reported by the initiative (source: Sills et al., 2014, Appendix 2)·. 
7 Areas covered by the remote sensing and spatial modelling part of the study, includes the initiative area and a large surrounding buffer zone. 
8 Tropical rainforest. 
9 Tropical moist deciduous forest.  
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2.4. Remotely observed land cover and land use patterns after DD using 
high-resolution imagery 

For the first research question (Fig. 1, Section 1), we used tree cover 
loss data based on a combination of the Global Forest Change (GFC) 
dataset (Hansen et al., 2013, version 1.3) and the Breaks For Additive 
Seasonal and Trend (BFAST) algorithm (Verbesselt et al., 2010, 2012). 
For methods and sampling design regarding the forest loss detection, 
we refer to Bos et al. (2019)1 . We define deforestation as a conversion 
from land above a certain tree cover percentage and covering more than 
a certain minimum mapping unit2 to land with very limited or no tree 
cover. Therefore, we follow the land cover definition of deforestation, 
which is more practical to assess, rather than a land use definition of 
deforestation (Seymour and Busch, 2016). BFAST and GFC data were 
temporally aligned for each site based on the minimum overlapping 
time period for the two datasets, resulting in 2001–2014 for Brazil- 

Transamazon, Peru-MDD and Indonesia-KCCP, 2001–2015 for In
donesia-Katingan and 2004–2014 for Vietnam-Cat Tien. These time 
frames were also applied in the spatial modelling part of this study. 
Forest degradation refers to a decrease in quality of certain features of 
the forests while the predominant land cover and land use remains 
forest. In this study, degradation is exemplified by a reduction in tree 
cover, while still exceeding the threshold of the corresponding forest 
definition. 

Follow-up land use or land cover after DD was used as proxy for the 
direct driver of deforestation3 . To assess land use following defor
estation, we assessed the forest loss samples from Bos et al. (2019), and 
determined follow-up land use using high-resolution imagery, con
sisting of Google Earth (2001–2019) and RapidEye (2010; 2014) ima
gery. In addition, time series data of Landsat TM (2001–2015) was 

Fig. 4. Workflow DD drivers, REDD+ intervention and alignment assessment.  

1 In the original study, the sample size was 270 pixels for each of the sites, and 
included both forest loss and stable forest pixels. For this particular study, we 
only focussed on the forest loss pixels, which led to slightly different sample 
sizes for each of the sites, that is, n=197 for Brazil-Transamazon; n=203 for 
Peru-Madre de Dios; n=206 for Indonesia-KCCP; n=203 for Indonesia- 
Katingan; and n=227 for Vietnam-Cat Tien. 

2 Following national forest definitions, source UNFCCC (2019). For specific 
thresholds used, see Bos et al. (2019). Forest definition used for Brazil-Trans
amazon is > =10% tree cover and a minimum mapping unit of 0.5ha. 

3 We acknowledge that in certain areas, the first follow-up land use may not 
always reflect the main driver of forest clearance (e.g. in Amazonian areas 
where forest loss is often followed by cropping, but long term land use consists 
of pasture. Likewise, in Indonesia, deforestation can be followed by rice crops, 
while this is only temporary until their rubber trees mature), but emphasize 
that longitudinal high resolution imagery or other methods such as household 
level surveys may better reveal these type of processes. In general, in this study 
we aim to report the long-term driver, but given the relatively short time frame 
of our study, for recent forest clearance detections, we cannot rule out to have 
detected the temporary or intermediate follow-up land cover/use rather than 
long-term drivers. 
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assessed to clarify certain land use patterns. Although the spatial re
solution of these data is limited (30 m), in cases of large-scale land 
conversion (such as tree crop plantations) and limited availability of 
high-resolution imagery, Landsat TM was often sufficient to validate 
follow-up land use. For recording the follow-up land use, we developed 
a survey using Open Foris Collect (Open Foris, 2019). For each sample, 
the confidence level was recorded. When a sample’s land use or land 
cover was confirmed with multiple imagery data sources, a high con
fidence level was given. Samples for which no decisive follow-up land 
use or land cover could be given due to data limitations or other reasons 
were assessed by an additional independent remote sensing expert or 
local expert. When uncertainty remained, samples were marked with a 
low confidence level. Follow-up land use classes were aggregated into 
four classes (Table 2). The relative size of each class was calculated 
using Stehman’s methods, while taking into account unequal sample 
class distributions (Stehman, 2014; Bos et al., 2019). 

2.5. Spatial modelling of underlying factors associated with forest loss 

For the second research question, we created a random forest model 
to assess the relative importance of predefined spatial variables to 
predict deforestation. A random forest model (RF) is a non-parametric 
method based on classification or regression tree learning. Unlike many 
other spatial models, RFs are known for their robustness, reduced risk 
of overfitting, capability to deal with non-linear relationships between 
prediction variables, and ability to address interactions without ex
plicitly defining them in the model (Breiman, 2001). The forest loss 
data (response variable) used differed across the sites, and was based on 
the map product with the highest accuracy as found in Bos et al. 
(2019)4 . The predictor variables used are described in Table 3. These 
topographic, climatic and proximity variables are known to influence 
economic returns and benefits that shape the land use and land cover 
change processes (e.g. Kaimowitz and Angelsen, 1998; Wood and Porro, 
2002; Geist and Lambin, 2002; Ferretti-Gallon and Busch, 2014), but 
their relative importance may differ across different contexts. 

Variable importance of these predictor variables was used as proxy 
for underlying forces of deforestation. Classification trees were com
puted for a binary categorical response variable (forest loss and stable 

forest). For each of the sites, 5% of non-NA pixels were sampled for 
training data, resulting in training datasets of sizes ranging from ap
proximately 250,000–770,000 pixels per study site. To weigh all mis
classifications equally in the trained RF, balanced training samples were 
generated so that 50 % of the training samples consisted of forest loss, 
and 50 % of stable forest. For each site, the random forest consisted of 
500 classification trees. The spatial predictor variables selected for this 
study were elevation, slope, distance to roads, distance to waterways, 
distance to existing agriculture, average annual temperature and 
average annual precipitation, which are common variables in defor
estation assessments (Ferretti-Gallon and Busch, 2014). Following  
Breiman (2001) and using the randomForest package (Liaw and 
Wiener, 2018) in R, the relative variable importance using the Mean 
Decrease in Accuracy (MDA) was calculated by (1) computing the out- 
of-bag statistic with the data for the i-th predictor variable intact, (2) 
permuting the data for the i-th predictor variable (i.e. the contents of 
the i-th prediction variable are randomly shuffled), (3) recalculating the 
out-of-bag statistic using the permuted data for the i-th predictor, (4) 
calculating the difference. This procedure was repeated for all seven 
prediction variables. Accuracies of the prediction maps were calculated 
following Olofsson et al. (2014). 

2.6. Socio-economic survey data for perceived direct and indirect drivers of 
deforestation 

For the third research question (Fig. 1, Section 1) we used data on 
reported direct and indirect DD drivers. These data were gathered 
during semi-structured interviews with REDD+ implementers, village- 
level focus groups (mixed gender and women’s only), and household 
surveys. The surveys were conducted in 2010–2011 and targeted ap
proximately 1200 households in 40 villages. Data gathered included 
forest regulations; perceived causes of forest cover/quality change; and 
household level clearance of forests and its purpose. A complete over
view of the questions asked and methods applied can be found in the 
technical guidelines (Sunderlin et al., 2010, 2016). 

Survey data from village focus groups and household interviews 
were cleaned, aggregated and visualized using R. Simple descriptive 
statistics were calculated for the main household variables, while a 
qualitative assessment was done for the data collected from the village 
surveys. The assessment focussed on the following themes and vari
ables: area (size) per land use, purpose of clearing, principal crop and 
crop type after clearing, forest area and forest quality change and 
perceived (exogenous) causes of forest cover change. 

Table 2 
Observations and corresponding aggregated classes of follow-up land use and land cover.        

Aggregated class  

Degradation Tree plantations Agriculture Other  

Observations  • Burned areas  

• Selectively logged areas (but 
remains predominantly forest)  

• Regrowth (partial)  

• Rubber1  

• Palm oil1  

• Large scale tree plantations  

• Crops  

• Cattle pastures  

• Shrub mix farm  

• Small scale agroforestry systems 
(incl. orchards, coffee etc)  

• Mining  

• Water  

• Change in river flow  

• Hydropower reservoir  

• Road infrastructure  

• Buildings 
Example 

1 To align with findings from the socioeconomic data we decided not to aggregate these under the “agriculture” class, as according to reported data, agents linked 
to these conversions often differ from agents for (subsistence or small scale cash crop) agriculture.  

4 The Global Forest Change dataset (Hansen et al., 2013) was used for Brazil- 
Transamazon, Peru-Madre de Dios, and Indonesia-KCCP. The combined dataset 
sensitive-early (Bos et al., 2019) was used for Indonesia-Katingan and Vietnam- 
Cat Tien. 
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2.7. Assessment of REDD+ interventions and alignment with DD drivers 

Data from a survey of village interventions were used to document 
the most relevant REDD+ interventions at each site (Sunderlin et al., 
2016). During the second phase of fieldwork (2013–2014), the research 
team first compiled a list of all interventions that aimed to conserve or 
restore forests that were documented in the study villages in earlier 
interviews with implementers and village focus group discussions. That 
list was refined with REDD+ implementers, and then with key in
formants in all study villages following the methods outlined in  
Sunderlin et al. (2016). REDD+ interventions included not only those 
implemented by the REDD+ proponent, but also (sub)national policies 
and programs that affected local forest use at the study sites. For each 
REDD+ intervention, information on agent (target stakeholder 
(group)), sector (e.g. forest, agriculture), and level ((sub)national or 
local) were recorded to assess the degree of alignment with the DD 
drivers results as found in the earlier parts of the study. 

3. Results 

3.1. Forest change patterns observed with remote sensing 

Table 4 gives an overview of the relative shares of forest area con
versions. The aggregated classes in Table 4 are broadly defined, but 
there are cross-site differences within those classes. That is, agriculture 
in Brazil is marked by pasture lands mainly, while in Indonesia-Ka
tingan this is mainly cropland, including rice. In Indonesia-KCCP, tree 
plantations constitute of oil palm plantations, unlike the tree planta
tions in Vietnam Cat-Tien. Fig. 5 shows some of these cross-site dif
ferences within the four classes. Site-specific findings are given below. 
Two of the 1350 samples were given a low confidence level (SM1). SM2 
gives an overview of the spatial distribution of the samples per site and 
their reported forest conversion classes. 

3.1.1. Brazil-Transamazon 
The class degradation (n = 13) constitutes mostly (n = 11) of sam

ples that were characterised by regrowth after forest disturbance. All 
samples marked as agriculture (n = 177), were pastural lands, often 
marked with cattle and cattle tracks. The samples marked as other 
(n = 7) were roads, buildings, or other infrastructures. 

3.1.2. Peru-MDD 
Samples classified as degradation were characterised by small scale 

disturbances after which some degree of regrowth was visible in the 

subsequent years. Agriculture consisted mainly of pastural lands 
(n = 83) and to a lesser degree crops (n = 16). Although the other class 
was relatively small (i.e. 6% of the total area of forest deforested,  
Table 4), the spatial distribution of this class gave some clear insights 
(SM2), with patches of mining, clearly distinguishable near the main 
river. 

3.1.3. Indonesia-KCCP 
Degradation in this site consisted of forest affected by fires, and 

logging after which regrowth occurred with a mixture of trees and small 
shrubs. Tree plantations consisted primarily of large-scale oil palm 
plantations, although often only marked several years after the defor
estation disturbance was detected. Agriculture consisted of rice paddies 
and other crops. Conversions marked as other (n = 11) were mostly 
cases of mining (n = 7), and some conversions to infrastructure. 

3.1.4. Indonesia-Katingan 
Samples marked as degradation consisted mostly of partially logged 

plots and degraded forest at oil palm plantation edges. To a lesser de
gree, fires were noted, as well as some cases of partial regrowth after 
forest disturbance. Tree plantations consisted mostly (60 out of 62 cases) 
of oil palm plantations. Samples with agriculture were mostly small- 
scale croplands. The other class consisted of infrastructure (buildings) 
(n = 3) and some cases of bare land (n = 5) for which no other follow 
up land use was detected. 

3.1.5. Vietnam-Cat Tien 
Samples marked as degradation consisted of forests with clearly 

visible selective logging, and to a lesser degree recurrent disturbed 
forests with intermediate regrowth. A considerable amount of samples 
(n = 44) were marked as large-scale monocultural tree plantations. 
Agriculture consisted mainly of cropland (n = 110), including bushy 
crops, coffee and cashew trees. To a lesser degree, pastural lands were 
found (n = 12) and some mixed areas with cropland and small-scale 
plantations (n = 6). The other class consisted of infrastructure (build
ings and roads, n = 8), and flooded areas due to the building of a new 
hydropower dam (n = 8). 

3.2. Spatial modelling 

The spatial distribution for each of the prediction variables, as well 
as comparisons between forest loss and stable forest pixels per site can 
be found in SM3. Error matrices and corresponding error-adjusted areas 
were estimated and accuracies were calculated for all model predictions 
based on a comparison between the models’ predictions and the input 
deforestation maps. The accuracies are listed in Table 5, the error 
matrices can be found in SM4. In general, the random forest models 
predicted deforestation well using the spatial layers as predictors, with 
overall accuracies exceeding 86 %. The relative high overall accuracies 
build confidence in the random forest models in general, as low ac
curacies in the models’ predictions would also suggest that the variable 
importance findings would be less meaningful. The relatively low user’s 
accuracies of forest loss class for Peru-MDD and Indonesia-KCCP in
dicated that the models overestimated forest loss at those sites. Here, 

Table 3 
Prediction variables for Random Forest model.      

Variable Type Unit Source  

Elevation Topographic Meters CIAT-CSI SRTM (Jarvis et al., 2008) 
Slope Topographic Degrees Derived from elevation, see above. 
Annual precipitation Climatic Millimetres WorldClim 2 (Fick and Hijmans, 2017) 
Annual mean temperature Climatic Temperature Celsius WorldClim 2 (Fick and Hijmans, 2017) 
Distance to agriculture Proximity Meters ESA Climate Change Initiative Land Cover Map (2015) 
Distance to roads Proximity Meters OpenStreetMap 
Distance to waterways Proximity Meters OpenStreetMap 

Table 4 
Area proportion (%) of follow-up land use and land cover classes.         

degradation  tree plantations agriculture other  

Brazil-Transamazon 10 %  0 % 87 % 3 % 
Peru-MDD 59 %  0 % 35 % 6 % 
Indonesia-KCCP 32 %  50 % 15 % 3 % 
Indonesia-Katingan 51 %  24 % 16 % 9 % 
Vietnam-Cat Tien 14 %  30 % 42 % 14 % 
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the random forest models’ predictions were thus well capable of mod
elling the spatial patterns of forest loss when using the available in
formation from the prediction variables, but they were less capable of 
estimating the magnitude of forest loss. 

The mean decrease in accuracy (MDA) is an indicator of variable 
importance5. Fig. 6 shows that in general, distance to existing agri
culture, annual precipitation (i.e. micro-climate differences), and 

distance to roads are important spatial factors for explaining defor
estation, although there are differences between sites. In Peru-Madre de 
Dios for example, the relative importance of distance to agriculture as 
deforestation predictor is higher than in Vietnam-Cat Tien, where it is 
ranked as the third-highest explanatory factor. 

Local variability in annual precipitation turned out to be important 
across all sites, which can also be derived from the density plots (SM3), 
which show distinct differences in precipitation between the groups of 
stable forest and forest loss pixels. Yet, local variability in annual pre
cipitation may be correlated with other variables both included in, and 
excluded from these models. In general, the topographical factors of 
slope and elevation were least important. 

3.3. Socio-economic survey data for perceived direct and indirect drivers of 
deforestation 

3.3.1. Perceived forest area and forest quality change at village level 
During the mixed gender focus group discussions, the majority of 

villages reported a decrease in forest area in the past two years6 . Forest 
quality was defined as the availability of goods and services of the forest 
related to density of woody material, forest health, and biological 
productivity and diversity, and is thus a proxy for forest degradation. 
The majority of the villages reported a decrease in forest quality in the 
past two years, with Vietnam-Cat Tien being the exception7 . 

Fig. 5. Examples of DD activities encountered. Brazil-Transamazon: (a) agriculture (pasture) and (b) other (infrastructure). Peru-MDD: (c) degradation and (d) other 
(mining). Indonesia-KCCP: (e) other (mining) and (f) tree plantation (oil palm). Indonesia-Katingan: (g) degradation (fire) and (h) agriculture (crops). Vietnam-Cat 
Tien: (i) other (hydropower reservoir) and (j) tree plantation. 

Table 5 
Accuracies of Random Forest Model predictions.              

Brazil - Transamazon Peru - MDD Indonesia - KCCP Indonesia - Katingan Vietnam - Cat Tien  

Loss Stable Loss Stable Loss Stable Loss Stable Loss Stable  

UA 93.5 % 84.8 % 34.1 % 99.9 % 57.3 % 97.6 % 74.7 % 94.6 % 66.3 % 96.5 % 
PA 96.3 % 75.5 % 98.5 % 89.8 % 90.7 % 85.0 % 89.1 % 86.4 % 90.6 % 85.1 % 
OA 91.8 % 90.3 % 86.0 % 87.3 % 86.4 % 

UA User's accuracy; PA Producer's accuracy; OA Overall accuracy.  

Fig. 6. Random Forest models variable importance.  

5 MDAs refer to accuracies of single tree models, and should not be confused 
with the model accuracies of the map accuracies of the model’s predictions as 
presented in Table 5. 

6 There were eight village level focus groups at each site (total n=40). 
Decreased forest area was reported in six villages in Brazil-Transamazon and in 
Indonesia-Katingan, seven in Peru-MDD and in Indonesia-KCCP. Only in 
Vietnam-Cat Tien, a minority of the villages reported a decrease in forest area 
(n=2). 

7 For the same 40 village level focus groups, the majority of the villages in 
Brazil-Transamazon (n=7), Peru-MDD (n=8), Indonesia-KCCP (n=8) and 
Indonesia-Katingan (n=6) reported a decrease in forest quality. In Vietnam-Cat 
Tien, three villages reported no forest quality change, while the remaining five 
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3.3.2. Perceived forest pressure sources at village level 
During the mixed gender and women focus group discussions, par

ticipants were asked to report their perceived forest pressure sources in 
their village area and surroundings. These pressures include both 
agents, activities and facilitating conditions. The pressures mentioned 
are summarized in Table 6 in no particular order. 

3.3.3. Forest clearance and purpose by households 
The previous section reported both exogenous and endogenous 

pressures on the villages’ forests. Here, we focus on household level 
clearing of forests as reported in the household surveys, which re
presents endogenous pressures. Yet, these results do not show the re
lative importance of endogenous pressures in the sites. 

The results are visualised in Fig. 7. Whether or not households clear 
forests differs greatly between the sites. While in Brazil-Transa
mazon > 75 % of interviewed households report forest clearing in the 
past two years, in Vietnam-Cat Tien this is < 5 %. Also, the mean and 
median area of forest cleared differs widely, although there are large 
differences between the spreads within sites, as Brazil-Transamazon 
and Peru-MDD contain more outliers above the boxplots’ maxima. In all 
sites, household clearance is mostly for cropping. In the South American 
sites, relatively few households report a relatively large area cleared for 
pasture8, while in the Southeast Asian sites this regards clearance for 
tree plantations such as oil palm and rubber plantations9 (Fig. 7d). Still, 
it is worth noting that especially the reported clearance for tree plan
tation is sensitive to the moment of survey data collected, as households 
reported not to clear for tree plantations regularly. For example, in the 
survey round of a few years later (not reported here), the amount of 
forest cleared for tree plantations in Indonesia-KCCP was significantly 
larger compared to the results of the first survey round as presented in  
Fig. 7. 

3.4. REDD+ Interventions 

Table 7 shows an overview of the REDD+ interventions as discussed 

below. Together with the information on deforestation drivers (Section  
3.1-3.3), Table 7 was used for the identification of (mis)matches be
tween interventions and drivers in Section 4.3. 

3.4.1. Brazil-Transamazon 
From 2012–2017, the Sustainable Settlements in the Amazon project 

targeted smallholders in the Transamazon Highway region (Eastern 
Brazilian Amazon) to promote sustainable agricultural practices and 
was implemented by the NGO Amazon Environmental Research 
Institute (IPAM). In 2000, forest cover was 95.4 % but 19.2 % points 
were lost during 2001–2012 (Sunderlin et al., 2014b). Smallholders 
sampled had 69 % forest cover on their landholdings in 2010 (Duchelle 
et al., 2014), earning their income mostly from cropping and livestock, 
and clearing forest mostly for crops (Cromberg et al., 2014b). Inter
ventions focused on more sustainable agriculture and economic com
pensation (Simonet et al., 2019). 

Three main interventions were applied, which all focused on local 
small-to-medium sized farmers: 1) direct cash payments conditional on 
forest conservation and fire-free agricultural production; 2) investments 
in alternative production; and 3) support for farmers to comply with 
environmental regulations. Most interventions thus featured change in 
land use strategies (land-saving strategies) and compensated direct 
forest protection. At the same time, federal command-and-control po
licies had significantly curbed deforestation – from all sectors and ac
tors alike (Börner et al., 2014). Yet, ultimately the Brazilian Forest Code 
was also reformed in ways that particularly pardoned smallholder de
forestation, thus loosening somewhat command-and-control leverages 
on smallholders (Cromberg et al., 2014a; Simonet et al., 2019). 

3.4.2. Peru-Madre de Dios 
The objective of the REDD+ project in Madre de Dios, Peru is to 

provide incentives for Brazil nut concessionaries to conserve the forests 
on which they depend. This area is heavily forested (99 % in 2000) with 
very low deforestation, that is only 0.3 % point loss from 2001 to 2012 
(Sunderlin et al., 2014b). Brazil nut producers in the area glean most of 
their local income from forests, including Brazil nuts and timber 
(Garrish et al., 2014). The project began in 2009 as a collaboration 
between the private company Bosques Amazonicos and the local Brazil 
nut producers’ federation and targeted 405 concessionaries over 
308,757 ha (BAM, 2012). It was validated by VCS in 2012 and sold 1.5 
million verified carbon units through the voluntary market. 

Bosques Amazonicos, FEPROCAMD and a local Peruvian NGO pro
vided extensive technical support to Brazil nut producers to help them 
comply with national forest management regulations, specifically re
lated to the formulation of annual operational and 5-year management 
plans for their concessions. However, the main planned interventions of 
the REDD+ project – namely implementation of a forest monitoring 
and surveillance system, construction of a local nut processing plant to 
increase the market value of harvested nuts, and eventual payments 

Table 6 
Overview of perceived forest pressure sources at village level per site.       

Brazil-Transamazon Peru-MDD Indonesia-KCCP Indonesia-Katingan Vietnam- Cat Tien   

• Incoming migrants 
(farmland)  

• Logging companies (small & 
large scale)  

• Seasonal migrants  

• People from neighbouring 
villages  

• Agro-industrial farms 
(cattle)  

• Unclear tenure rights (in- and outside 
Brazil nut concession areas)  

• Logging companies  

• Incoming migrants for papaya 
plantations and timber (areas in 
vicinity of roads)  

• Gold mining (remote areas)  

• Industrial companies (pulp, 
paper, soy, cattle)  

• Swidden agriculture  

• Large food estate (rice, by the 
government)  

• Oil palm plantations 
(selection of villages)  

• Illegal gold mining (selected 
villages)  

• (Legal) logging for housing 
infrastructure  

• Logging by timber companies  

• Poaching  

• Oil palm plantation  

• Small scale mining  

• Agricultural land 
expansion  

• Infrastructural 
developments  

• Poaching  

• Small scale logging  

• Large scale cattle  

• Rubber plantation (firms)  

• Timber plantation  

• Small scale agriculture  

• Small scale (illegal) timber 
harvesting 

(footnote continued) 
did not know or did not answer. 

8 In Brazil-Transamazon, 25 households (10 % of respondents) together re
ported approximately 190 ha of clearance for pasture, which equals 19 % of 
reported forest area cleared. In Peru-MDD, 7 households (3 % of respondents) 
together reported approximately 74 ha of clearance for pasture, which equals 
25 % of total reported forest area cleared. 

9 In Indonesia-KCCP, 5 households (2 % of respondents) together reported 
approximately 4 ha of clearance for tree plantations, which equals 5 % of total 
reported forest area cleared. In Indonsia-Katingan, 12 households (5 %) to
gether reported approximately 15 ha of clearance for tree plantations, which 
equals 56 % of total reported forest area cleared. In Vietnam-Cat Tien, 1 
household (< 0.5 %) reported 3 ha of clearance for tree plantations, which 
equals 9 % of total reported forest area cleared. 
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Fig. 7. Reported forest clearance and purpose by households. 
(a) Shows the response to the question “did your household clear any forest during the past 2 years?” (b) Forest clearance (area) by households that reported > 0 ha 
clearance. Upper and lower extremes of whiskers represent Q3+1.5* interquartile range (IQR) and Q1–1.5*IQR respectively, where IQR=Q3−Q1. Red asterisk 
represents the mean. (c) Total forest clearance by households (respondents only) per site (d) Follow up use of forest area cleared. n represents number of respondents 
per purpose category. 
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from the sale of carbon credits (Garrish et al., 2014) – never came 
through due to expiration of operational funds for the project in 2014. 

3.4.3. Indonesia-KCCP 
The Ketapang Community Carbon Pool (KCCP) is a forest carbon 

initiative of Fauna and Flora International (FFI) Indonesia Programme. 
The lowland and peat swamps in this area in West Kalimantan experi
enced 4.6 % forest loss in the period 2001–2012, threatening biodi
versity and carbon-rich tropical forests (Sunderlin et al., 2014b; Intarini 
et al., 2014). Started in 2008, the NGO focusses on arranging commu
nity forest rights for local villages, aiming to strengthen communities’ 
tenure security and counter threats from large-scale external actors in 
order to protect biodiversity and reduce DD related emissions (Intarini 
et al., 2014). 

The project’s main intervention is attaining a designation for spe
cific forest areas in groups of villages as a Hutan Desa (HD, Village 
Forest), forming a forest carbon pool. The tenure-based intervention is 
done in combination with support for village boundary mapping, land 
use planning, monitoring and control, and reforestation. At the same 
time, there were existing government reforestation programs and a 
forest monitoring activity by a separate NGO. By attaining the HD 
status, the tenure of specific villages over communally-managed forest 
areas are clarified. This paves the way for getting management rights of 
the forest. By 2011, six villages10 in Ketapang district, West Kalimantan, 
had proposed and attained HD status from the central government. 
During the same year, the Indonesian Ministry of Forestry initiated a 
national moratorium on the issuance of new permits for forest utiliza
tion and conversion on peatlands and primary forests, partially over
lapping our study area in KCCP (Indonesian Ministry of Forestry, 2011). 
This moratorium became permanent in August 2019, covering 66 mil
lion hectares of rainforest (Diela, 2019). 

3.4.4. Indonesia-Katingan 
The Katingan Peatland Restoration & Conservation Project, cur

rently known as the Katingan Mentaya project, was founded in 2007, 
and is managed by the private company PT Rimba Makmur Utama (PT. 
RMU) (Indriatmoko et al., 2014). The villages collaborating in the 
project are adjacent to Sebangau National Park. The REDD+ project 
site is largely forested and experienced 2.6 % forest loss in the period 
2001–2012 (Sunderlin et al., 2014b). The main project strategy is to 
protect an entire peat hydrological unit (i.e. ‘peat dome’) by converting 
the status of the land into a restoration concession and supporting 
communities with locally suitable and sustainable income-generating 
activities. Between 2010 and 2018, the project generated 23.3 million 
Verified Carbon Units (VCUs) equivalent to 23.3 million tons of 
greenhouse gas emissions removed (VCS, 2015). 

The main interventions of this initiative are: (i) prevent large-scale 
deforestation by attaining an Ecosystem Restoration Concession (ERC) 
over a carbon-dense peat dome between the Katingan and Mentaya 
rivers; (ii) provide incentives for communities living in areas sur
rounding PT RMU’s ERC to support the prevention of DD through 
various alternative livelihood interventions agreed upon with commu
nities; (iii) restore degraded peat forests through forest restoration ac
tivities; and (iv) establish fire-fighting teams in communities. 

3.4.5. Vietnam-Cat Tien 
This project (2009–2012) was initiated by SNV (the Netherlands 

Development Organisation) as a REDD+ readiness project to assess the 
opportunity for accessing the voluntary carbon market and to establish 
a forest carbon facility in participation with local villagers. In the 
project area, 58 %–71 % of villagers interviewed considered agriculture 
as their primary or secondary occupation (Huynh, 2014). Their largest 
proportion of land consist of secondary forest, followed by agriculture. 
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Natural forests are owned by the government. The forest cover in this 
area is high (94.5 % in 2000), with 5.3 % forest loss from 2001 to 2012 
(Sunderlin et al., 2014b). The REDD+ readiness interventions primarily 
focused on carbon monitoring and participatory forest monitoring 
trainings (Huynh, 2014). 

Interventions in Vietnam-Cat Tien were implemented by govern
ment agencies and non-governmental organizations (NGOs), and 
mainly focussed on forest protection through trainings (on forest pro
tection, REDD+ carbon credits, agroforestry), alternative livelihoods 
provisions (focussing on cacao and cashew) and participatory mon
itoring (participatory forest management) activities. Government 
agencies such as the National Park management and NGOs targeted 
their activities to communities living in the buffer zone of a national 
park. In one intervention, an NGO assisted district government agen
cies, focussing on REDD+ policy making. 

4. Discussion and conclusion 

In this final section, we first return to the three research objectives 
as stated in the introduction. We also reflect upon our study design and 
results and conclude with some final remarks. 

4.1. Complementarity of different data sources in providing DD drivers 
information 

Each data source and method used has its advantages and dis
advantages. Their ability to assess certain driver elements is shown in  
Table 8. Human interpretation of high resolution remotely sensed 
imagery provides insights into the activities associated with different 
conversion types. When a proper sampling design is applied, a sample- 
based approach like ours allows for estimating the relative share of 
different conversion types. Increasing the number of DD classes may 
lead to more informative results but requires increased numbers of 
samples (Foody, 2009). Further, although going beyond the scope of 
this research, temporal changes in DD processes can be revealed when 
the same samples are assessed repeatedly over time. Mapping the dif
ferent conversion types of the samples reveals within-site spatial pat
terns (SM2). 

Spatial modelling and random forest models in particular can reveal 
the relative importance of preselected underlying factors and they can 
deal with non-linear relationships between prediction variables. Spatial 
models enable ranking of these variables by relative importance, and 
thus explain to what extent certain topographic, climatic and proximity 
variables play a role in the land use change and land cover conversions 
in a specific area. These insights are particularly valuable for detecting 
risk areas for future forest loss, and thus may be used as information for 
selecting future REDD+ target areas. Yet, the relationships between the 
prediction variable and spatial factors that turn out to be important 
may not be easily interpretable. While not part of this particular study, 
the spatially explicit prediction maps allow for identification of areas at 
immediate deforestation risk. 

Village and household level surveys further complement the pre
vious methods, as they can provide insights in to the agents of specific 
DD activities. Further, local stakeholders can often help to identify the 

underlying factors at play. The spatial and temporal information about 
DD activities are often limited compared to remotely observed methods, 
but participatory mapping and recurrent surveys can be of added and 
unique value when combined with the spatial DD information. 

4.2. Deforestation and forest degradation drivers 

Using the high-resolution imagery, we detected both across- and 
within-site variability of land patterns following DD. The locally re
ported drivers showed this diversity too, as a variety of both en
dogenous and exogenous causes were found in all sites. Agriculture is 
the dominant DD in the sites of Brazil (mainly pasture) and Vietnam 
(mainly crops), and as underscored by the RF results, distance to ex
isting agriculture was found to be in the top three important spatial 
factors for predicting DD. In the South American sites, a greater mixture 
of endogenous and exogenous causes were reported, including agri
culture by smallholders, settlement by migrants, presence of logging 
companies, agro-industrial firms and mining. In absolute terms, more 
household level clearing (for annual crops) was reported at the 
Brazilian site than in other sites, although large differences between 
households exist. 

In the Southeast Asian sites, large-scale conversions were reported 
and mainly comprised of agro-industrial activities such as oil palm, 
pulp and food plantations. We did not consider whether these activities 
took place in- or outside concession areas. Degradation is the main 
forest change in Peru-MDD (selective logging) and Indonesia-Katingan 
(near oil palm). This is in line with findings from earlier studies in those 
four countries (e.g. Soares-Filho et al., 2006; Asner et al., 2013; Gaveau 
et al., 2018; Khuc et al., 2018). 

Most of our sites showed within-site spatial variability in land pat
terns (SM2). In Peru-MDD, mining was found only close to the main 
river in the south, pastures mainly close to roads, while selectively 
logged areas were also observed further away from roads and rivers. 
The RF model showed that forest loss occurred often close to roads in 
the two sites in Latin America and in Indonesia-Katingan. In Indonesia- 
KCCP mining was found in the south west, while other conversion types 
were found across the site. In Indonesia-Katingan large areas of oil palm 
plantations were found in the north east, while degraded forest due to 
fires were mainly found along the two main rivers. In Vietnam-Cat Tien, 
crops, and tree plantations were each found in particular regions within 
the site, and deforestation in the east was associated with the estab
lishment of a large hydropower dam. 

4.3. Alignment of DD drivers and REDD+ interventions 

4.3.1. Site specific findings 
In Brazil–Transamazon, local interventions generally focus on local 

small-to-medium sized farmers by promoting sustainable farming 
practices (incentives), while federal forest restrictive policies (disin
centives) do not distinguish between agents and sectors. Both local 
interventions and federal restrictive policies thus seem to be aligned 
with the agriculture related DD drivers. Yet, the national policy par
tially pardons small-scale deforestation, thus somewhat contrasting 
federal policies. 

Table 8 
Complementarity of methods and datasets.          

Agent Activity Location Time Underlying factors Size (of activity)  
who what where when why how much  

High resolution imagery ✗ ✓ ✓ ✓ ✗ ✓ 
Random Forest model ✗ ✗ ∼ ✗ ✓ ∼ 
Socio-economic surveys ✓ ✓ ∼ ∼ ∼ ✗ 

✓yes 
∼to some extent 
✗no  
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In Peru-MDD, we found clear within-site spatial differences in DD 
drivers, which calls for a locally tailored approach. The REDD+ in
itiative focusses on Brazil nut concession owners north of the river, thus 
not targeting the large-scale mining near the main river. Further re
search is needed to verify whether other interventions target mining 
agents specifically or if indeed this driver is currently not addressed 
sufficiently. The REDD+ initiative indirectly addressed small-scale 
logging by adding value to Brazil nut concessions via increased prices 
for producers. Yet, limited logging under forestry regulation in Peru is 
allowed (Garrish et al., 2014). 

In Indonesia-KCCP, the initiative’s focus on tenure clarification is 
aimed as an empowerment tool for local communities, in order to keep 
exogenous agents out. In that sense, these interventions are in line with 
the exogenous threats coming from large scale palm oil companies. 
Mining was found to be a considerable, but very localised driver present 
in the south west of the area. This again calls for a locally tailored 
approach of REDD+ interventions, as mining was not addressed spe
cifically by any of the interventions in this study. 

Part of the initiative’s focus in Indonesia-Katingan is fire prevention, 
to correspondingly reduce the impact of fires and thus prevent forest 
degradation. This is in line with the major threat we found in the area. 
Exogenous agents such as palm oil companies play an increasing role in 
the area’s forest change activities, and is correspondingly putting a 
pressure on local communities. These exogenous drivers are not tar
geted directly by the interventions. 

In Vietnam-Cat Tien, mostly secondary forests are being converted 
to agriculture and plantations (mainly orchards and cashew planta
tions). Interventions focused primarily on environmental education and 
stimulating sustainable livelihood practices through the provision of 
livelihood enhancements. Yet, reported clearance at household level 
was minimal, so conversions by other actors may have been addressed 
insufficiently. 

4.3.2. General remarks regarding driver-intervention alignment 
While national or subnational policy interventions across the sites 

mostly comprise of regulations to restrict forest access, the local in
itiatives often comprise of a mixture of interventions. These ‘baskets’ 
are regularly targeted towards individual smallholders or communities, 
and are often continuations of existing integrated development and 
conservation projects and programmes, as described in earlier studies 
based on the GCS REDD+ data (Sunderlin et al., 2014a; Duchelle et al., 
2017). 

The village and household level survey data showed that exogenous 
agents played an important role in DD and high-resolution imagery 
revealed most conversion activities to be large-scale, while most REDD 
+ interventions mainly targeted local communities and smallholders. 
Still, incentives to smallholders are of value as they can compensate for 
disincentives affecting smallholders and large landholders alike. 

Müller et al. (2013) argue that proper driver-intervention alignment 
does not necessarily mean that REDD+ should prioritise its activities on 
the largest driver at play (mechanized agriculture in that case), but 
rather should take into account its opportunity costs. In addition, one 
might argue that for effective and efficient REDD + alone, driver-in
tervention alignment is not essential as, at least in theory, DD can be 
addressed by forest use restrictions combined with effective law en
forcement. However, this is most likely not equitable in the sense that 
people who depend on the forest the most for their livelihoods, will 
most likely be disproportionally affected by restrictive interventions. 
Reduced DD may then lead to trade-offs in well-being and forest-related 
income. As Godar et al. (2014, p. 15595) acknowledge: “Beyond the 
technical difficulties and increased costs, efforts to curb deforestation in 
areas dominated by smallholders are politically and socially proble
matic because many smallholders depend on clearing small areas of 
forest for their livelihoods and subsistence”. Therefore, understanding 
driver-intervention alignment is at the least essential to understand who 
is most likely to lose out from curtailing deforestation, and where trade- 

offs between carbon and well-being outcomes can be expected. 

4.4. Study reflections 

4.4.1. Dynamics of drivers over time 
In addition to spatial variability in drivers, drivers can change over 

time, as a result of interventions or due to other processes. As Godar 
et al. (2014) argue, the changing (relative) contributions of specific 
actors to deforestation and degradation need to be examined in order to 
achieve further reductions in DD. These dynamics should be studied in 
more detail, and be taken duly into account when designing, im
plementing or evaluating REDD+ interventions. 

In our study, the timeframes from our remote sensing and spatial 
modelling assessment (2001/2004–2014/2015) differ from the time
frame addressed in the socio-economic surveys (conducted in 
2010–2011, with reported forest clearing regarding the two years prior 
to the surveys). Remote sensing requires longer timeframes to detect 
follow-up land use and other DD patterns, which would complicate 
year-to-year comparison between remotely sensed patterns and re
ported drivers. We argue that for the purpose of method com
plementarity assessment, however, year-to-year alignment is of lesser 
importance, as the different data sources and corresponding methods 
focus on different driver elements. 

4.4.2. Discrepancies in deforestation magnitudes and deforestation drivers 
Although assessing their complementarity was the main reason for 

using multiple data sources, the results contain some, at least see
mingly, discrepant findings regarding deforestation estimates and di
rect drivers categories. 

We only report relative shares (in percentages) of forest change 
patterns observed by remote sensing, as the area of interests of the 
remote sensing analysis are based on rectangular buffers around the 
REDD+ initiative areas and therefore comprise most likely of more 
than the study villages’ area of influence. In the absence of spatially 
explicit household areas, direct comparison of deforestation numbers in 
absolute terms would therefore be impossible. It is possible that 
household level clearance was under-, or over-reported, although 
multiple verification questions in the household survey limited this 
chance considerably. 

In Section 2.4 we already acknowledged that the follow-up land use 
after deforestation is not always the main driver of deforestation. 
Findings on ‘drivers’ from high resolution imagery can therefore see
mingly contradict the findings from village and household surveys. In 
addition to the reasons addressed in the previous section, this would 
call for a longitudinal study on local land use patterns, in which cor
responding DD drivers and changes therein would be repeatedly as
sessed. 

4.4.3. Study limitations and further research 
We acknowledge that in this study, we have put limited focus on the 

underlying forces influencing agents’ land use decisions. Here, we 
limited ourselves to aspects of land tenure, while other potential un
derlying forces including commodity prices were largely ignored. We 
do argue however that REDD+ interventions may have limited influ
ence on these (global) market prices, whereas strengthening land rights 
is at the core of many interventions as shown in this study. 

In the drivers assessment part of this study, our main focus was to 
examine the complementarity of different data sources in addressing 
different driver elements. We therefore simplified the study design for 
each of the three methods. This means that especially in the spatial 
modelling part further research is needed. Among other things, future 
studies could experiment with feeding the Random Forest model with 
more or other spatial factors that potentially explain or relate to DD, 
such as distance to cities and markets, distance to palm oil mills, and 
other microclimate factors. In that way, the Random Forest model could 
further enhance the understanding of the relative importance of 
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different spatial factors determining DD, and to further increase the 
accuracies of the prediction models, so as to identify future deforesta
tion risk areas. 

As explained in the introduction, this study is not an impact as
sessment of REDD+ interventions. We present a qualitative assessment 
of the alignment between drivers and interventions. The number of 
interventions is often not representative for the level of influence it has 
on drivers. For example, one overarching restricting intervention can 
have a bigger influence than ten small-scale livelihood enhancement 
interventions together. A quantitative analysis would therefore require 
information on the treatment intensity of interventions, which goes 
beyond the scope of this study. 

4.5. Concluding remarks 

DD activities are the result of a complex interplay of agents, un
derlying forces and the environment. Our study showed that DD pat
terns differ across and within sites. This calls for a locally tailored ap
proach when designing and implementing REDD+ interventions. We 
show that no single dataset or method can reveal all facets (who, what, 
where, why, when and how much) of DD drivers, while a combined 
assessment leads to a better understanding of these facets. Access to 
transparent information on direct drivers and underlying factors is 
important in all phases of the policy cycle of REDD+ (De Sy et al., 
2018). In early phases, this information plays an important role in 
raising awareness and problem definition. Based on spatially explicit 
information on deforestation hotspots and drivers of DD coming from 
earth observation data, spatial modelling and existing socio-economic 
datasets, policy-makers can decide as to what areas and which agents to 
prioritise on in the policy option and selection stage, for example as 
part of the plans written in the national climate change mitigation plans 
written for the Paris Agreement (i.e. NDCs). In the implementation 
stage, repeatedly updated forest data allow for continuous progress 
tracking of interventions. Finally, for evaluation and performance as
sessment purposes, information on drivers, interventions and the state 
of the forest using forest observation data play different roles at dif
ferent scales, varying from local intervention effectiveness and impact 
evaluation, national-level GHG and NDC progress reporting, to esti
mating UNFCCC stock-takes at the global level. 

Despite the differences between sites, some general lessons can be 
drawn from our study. The remote sensing analysis on DD classes 
showed that in most sites the predominant activity was large-scale 
agriculture or large-scale tree plantations. Household survey results 
showed that household-level forest clearance was mainly for annual 
crops. A basket of REDD+ interventions were applied in the study areas 
aiming to prevent forest conversions. Our results show that the local 
interventions mainly targeted households and small-scale processes, in 
contrast with the remote sensing findings that drivers were mostly 
large-scale. 

In this interdisciplinary study, we have provided insights into the 
complexity of DD driver identification and complementarity of different 
data sources at the local scale. Further, we have assessed the alignment 
of these identified drivers and REDD+ interventions. A better under
standing of the alignment between DD drivers and REDD+ interven
tions is vital for practitioners and policy makers to enhance the effec
tiveness, efficiency, equity and co-benefits of REDD+ at the local level. 
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