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A B S T R A C T

Assessing the performance of efforts to reduce emissions from deforestation and forest degradation (REDD+)
requires data on forest cover change. Innovations in remote sensing and forest monitoring provide ever-in-
creasing levels of coverage, spatial and temporal detail, and accuracy. More global products and advanced open-
source algorithms are becoming available. Still, these datasets and tools are not always consistent or com-
plementary, and their suitability for local REDD+ performance assessments remains unclear. These assessments
should, ideally, be free of any confounding factors, but performance estimates are affected by data uncertainties
in unknown ways. Here, we analyse (1) differences in accuracy between datasets of forest cover change; (2) if
and how combinations of datasets can increase accuracy; and we demonstrate (3) the effect of (not) doing
accuracy assessments for REDD+ performance measurements.

Our study covers five local REDD+ initiatives in four countries across the tropics. We compared accuracies of
a readily available global forest cover change dataset and a locally modifiable open-source break detection
algorithm. We applied human interpretation validation tools using Landsat Time Series data and high-resolution
optical imagery. Next, we assessed whether and how combining different datasets can increase accuracies using
several combination strategies. Finally, we demonstrated the consequences of using the input datasets for REDD
+ performance assessments with and without considering their accuracies and uncertainties.

Estimating the amount of deforestation using validation samples could substantially reduce uncertainty in
REDD+ performance assessments. We found that the accuracies of the various data sources differ at site level,
although on average neither one of the input products consistently excelled in accuracy. Using a combination of
both products as stratification for area estimation and validated with a sample of high-resolution data seems
promising. In these combined products, the expected trade-offs in accuracies across change classes (before, after,
no change) and across accuracy types (user’s and producer’s accuracy) were negligible, so their use is ad-
vantageous over single-source datasets. More locally calibrated wall-to-wall products should be developed to
make them more useful and applicable for REDD+ purposes. The direction and degree of REDD+ performance
remained statistically uncertain, as CIs were overlapping in most cases for the deforestation estimates before and
after the start of the REDD+ interventions. Given these uncertainties and inaccuracies and to increase the
credibility of REDD+ it is advised to (1) be conservative in REDD+ accounting, and (2) not to rely on results
from single currently available global data sources or tools without sample-based validation if results-based
payments are intended to be made on this basis.

1. Introduction

Under the United Nations Convention on Climate Change
(UNFCCC), reducing emissions from deforestation and forest

degradation and enhancing forest carbon stocks (REDD+) has been
initiated as an important climate change mitigation strategy. Hundreds
of government and non-government led REDD+ programs and projects
have emerged at the subnational and local level over the past decade
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(Simonet et al., 2015). In order to track the performance of these in-
itiatives, implementers must create or leverage measurement, reporting
and verification (MRV) schemes for carbon stocks and carbon emis-
sions. One approach to calculate carbon emissions is by multiplying the
activity data in a given area by an emission factor (Verchot et al., 2012;
IPCC, 2006). Activity data is the area of land changed from forest into
another type of land use.

The estimation of activity data evolved rapidly through innovations
in remote sensing and forest monitoring, with algorithms and datasets
with ever increasing levels of coverage, spatial and temporal detail, and
accuracy. However, these datasets do not necessarily agree with each
other, and more transparency and better cooperation between the sci-
ence and policy domain is required to measure –and realize– the miti-
gation potential of REDD+ activities (Grassi et al., 2017). Estimates can
differ due to many factors, including misalignment of reference levels
and time periods, forest and deforestation definitions used, and (remote
sensing) data sources used for a map product (e.g. different satellite
data) (Melo et al., 2018). Although the resulting differences in estimates
are expectable and understandable, the ambiguity leaves room for po-
litical manoeuvring around the data (Wong et al., 2016) which threa-
tens accountability. On the positive side, it is becoming more common
practice to systematically report map product’s accuracies and un-
certainties (e.g. Olofsson et al., 2013, 2014; Stehman, 2014), increasing
both transparency and product comparability. To this end, a reference
classification is needed. Accuracy is defined as the degree to which the
produced map agrees with this reference classification (Olofsson et al.,
2013), which generally requires a sample-based validation. The un-
certainty of the corresponding area estimates of, in this case, defor-
estation, is then expressed by the variance, standard error, or con-
fidence intervals (CI) of these estimates. One could account for these
uncertainties in the input data by being conservative about the sub-
sequent REDD+ estimates, so as to prevent overestimation of the re-
duced emissions (Grassi et al., 2008).

Locally calibrated products are often favoured over global products,
as this can considerably reduce the sample size for validation purposes
(GFOI, 2016). Still, some widely used regional forest change datasets
are found to be inaccurate by underestimating forest loss (Milodowski
et al., 2017). Also, trade-offs exist between accuracy, local adjustability,
and sample size needed on the one hand, and ease of use, processing
time, knowledge and skills required on the other (Duchelle et al., 2015).
While at the national level, in recent years the capacities of countries are
increasing (Romijn et al., 2015), for local and subnational REDD+ in-
itiatives it is often difficult and impractical to gain sufficient capacities
and resources to perform proper area estimations. Here, the availability
of open-source products provides an attractive opportunity. It remains
understudied however, to what extent these readily available datasets
and tools can contribute to challenges in the environmental domain and
to REDD+ performance assessments in particular.

For local forest cover loss measurements, it is of vital importance to
understand the differences in accuracies of forest cover loss maps de-
rived from different products and tools. This supports the choice to use
either more complex, time-consuming, but locally adaptable tools that
provide the required high accuracies, or to opt for a readily available
product with global coverage which might suffice in certain cases. In
addition, accuracy assessment of combinations of products and tools
can reveal their complementarities and show how uncertainties can be
minimized while maximizing accuracies. In other words, in terms of
increased accuracy and decreased uncertainty, a combined product may
be better than the sum of its parts. An earlier study has focused on a
comparison of available datasets in terms of in accuracy and un-
certainty in one country (Melo et al., 2018), while others have studied
the differences across several tropical countries (e.g. Turubanova et al.,
2018). To the best of our knowledge, this is the first effort however, to
compare different products at different (subnational) sites across the
tropics, while exploring the potential and added value of combining
those products.

Datasets used for REDD+ performance assessments should, ideally,
be free of any confounding factors, but it is currently unclear how
performance estimates are affected by data uncertainties. Hence, a
systematic accuracy assessment is necessary to compare accuracies in
various map products and to gain insight in the remaining uncertainty
in deforestation area estimates. Furthermore, it remains understudied
whether and how map products could complement each other and to
what extent they are suitable for measuring the performance of REDD
+. Therefore, the objectives of this study are to analyse if and how
combinations of datasets can increase accuracy, and to understand how
differences in accuracy between forest cover change datasets and its
corresponding uncertainty influence REDD+ performance assessments.
We defined the following research questions:

1) How do forest cover loss datasets differ in terms of accuracy?
2) What is the complementarity of these forest cover loss datasets in

increasing accuracy?
3) How do map accuracy and area estimate uncertainty influence

REDD+ performance assessment?

2. Methods & material

2.1. Study area

We use data from five local REDD+ initiatives located in four
countries across the tropics (Table 1). These initiatives are part of the
Global Comparative Study on REDD+ (CIFOR, 2017) and were selected
to represent a wide range of intervention types ((dis)incentives and
enabling measures), implementer types (government, non-govern-
mental organization, private sector), and geographies across the

Table 1
Site characteristics.

Site (Approx.) size (ha) of area of interest (AOI) Main ecozone(s) (source: FAO) REDD+ start year National forest definition1

Tree cover (%) MMU2 (ha)

Peru 1,100,000 Tropical rainforest 2009 30 0.09
Tanzania 200,000 Tropical dry forest / tropical shrubland 2010 10 0.50
Vietnam 800,000 Tropical rainforest / Tropical moist deciduous forest 2009 10 0.50
Indonesia-A 2,000,000 Tropical rainforest 2008 30 0.25
Indonesia-B 3,600,000 Tropical rainforest 2009 30 0.25

1 Based on most recent submissions to UNFCCC (2019).
2 Minimum mapping unit.
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tropics. Furthermore, they vary in terms of size and environmental
context, namely from dense primary rainforest to dry miombo wood-
lands (Sills et al., 2014). Data availability constraints affected the se-
lection procedure, as the availability of both map products (section 2.3)
was a prerequisite for this study.

2.2. Summary of workflow

The workflow and processing steps (Fig. 1) were repeated for each
study site. We compared the accuracy of a tree cover change dataset,
i.e. Global Forest Change (GFC), and a map developed using an open-
source algorithm to detect forest cover change, i.e. Breaks For Additive
Seasonal and Trend (BFAST). For each study site and based on national
forest definitions, we used the same forest mask using tree cover (TC)
percentage and an area sieve using the minimum mapping unit (MMU)
(Table 1). We thus compared differences in change detection between
the two input products, rather than differences in forest definitions
applied. We considered three classes: before, after and no change. The
transition between before and after is defined by the start year of each
studied initiative. We combined the two products using different

reclassification strategies, which led to a set of new combined change
map products. We applied a stratified random sample on the change
map and validated the original products and reclassified products using
a set of visual tools. Accuracies were calculated using these validation
samples, as well as the differences in accuracies relative to the two
input map products. The uncertainty in the area estimates was ex-
pressed using the 95% and 50% CIs of those estimates. We compared
the map estimates and reference-based area estimates. Finally, we as-
sessed the influence of uncertainty in the area estimates and their
trends on REDD+ performance measurements. All analytical steps are
discussed in more detail below.

2.3. Input data

For the first map product, we used Global Forest Change (GFC) data
(version 1.3), a Landsat-based time-series dataset of tree cover density
in 2000 and annual tree cover loss for 2001–2015 (Hansen et al., 2013).
The GFC product provides yearly forest cover loss data with global
coverage. Together with baseline data on forest cover in 2000, users can
relatively easily examine deforestation patterns using their own forest

Fig. 1. Workflow and processing steps.

Table 2
Comparison of GFC and BFAST products (with information from Hansen et al., 2013; Verbesselt et al., 2012; Gross et al., 2017).

GFC BFAST

Type 2000 tree cover; loss; gain; and loss year raster products Change detection algorithm
Sensor Landsat ETM+ Depends on user input, here: Landsat ETM+
Spatial resolution 30 m Depends on user input, here: 30 m
Temporal resolution Year Julian day, limited by user input and cloud coverage
Spatial coverage Global Site based; 'case studies'
Algorithm Bagged decision tree model Additive season and trend model
Advantages Global coverage, easy to use, end product freely available Locally modifiable, open source
Disadvantages Algorithm not flexible; not near-real time Requires user's input data; requires expert knowledge; computationally intensive
Source http://earthenginepartners.appspot.com/science-2013-global-forest http://bfast.r-forge.r-project.org/
Reference Hansen et al. (2013) Verbesselt et al. (2012)
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definitions. Data analysis using the Global Forest Watch tools does not
require expert GIS knowledge.

The other product is based on the Breaks For Additive Seasonal and
Trend (BFAST) algorithm (Verbesselt et al., 2010, 2012; DeVries et al.,
2015), which requires a time series of local input data (here, NDVI and
NDMI based on Landsat satellite data). With this adaptable open-source
deforestation detection algorithm, users can analyse deforestation pat-
terns in their own time series data in, for example, a cloud processing
environment. It is usually applied to smaller areas, as processing time
increases with longer time series and larger area spans. Some degree of
remote sensing knowledge and coding skills are necessary to apply the
algorithm on the time series. The algorithm is highly flexible and can be
adapted to the local (environmental) context and user needs. The user
can calibrate the model by adjusting the parameters to the local con-
text, resulting in change rasters with interannual precision. Both pro-
ducts allow the user to create forest cover change products with a
temporal resolution of one year or shorter, and a spatial resolution of
30 m. The main differences between the two products regard their
flexibility, coverage, and ease-of-use (Table 2).

2.4. Pre-processing

We aligned our forest definitions with the corresponding countries’
definitions1 . These generally consist of a tree cover or crown percen-
tage at the baseline year and a minimal mapping unit (MMU) (Table 1).
GFC’s tree cover density layer for the year 2000 (TC2000) allowed us to
create forest masks based on the nationally defined tree cover percen-
tage thresholds. Next, we applied area sieves following the countries’
defined MMU and applied these forest masks to both input products. We
defined deforestation as a change from forested land (using the forest

mask) to land that has been clear cut (i.e. bare soil)2 .
In addition to aligning forest and deforestation definitions, we

needed to temporally align the data for the products to represent the
same time periods (Table 3). We then aggregated the change products
into three classes, representing (1) the period before the REDD+ in-
terventions started, (2) the period after the interventions started, and
(3) no change (i.e. stable forest). All other pixels, (i.e. non-forest; forest
cover change in other years etc.) were excluded from further analyses.

2.5. Reclassification of change products

Since these datasets generally have their own strengths and weak-
nesses (Table 2), we assessed whether joint products can lead to an
accuracy increase. Therefore, we combined the two products at pixel
level using five different reclassification strategies. The first four stra-
tegies are defined by differences in sensitivity to change and in timing
of change detection (Fig. 2), based on the following decision rules:

• I Sensitive early – Adopt value of change product that detects a dis-
turbance the earliest, regardless of the other change product’s de-
tection;

• II Sensitive late – Adopt value of change product that detects a dis-
turbance the latest, regardless of the other change product’s detec-
tion;

• III Conservative early – If any of the change products classifies the
pixel as no change, then the decision for the reclassified product is no
change. If both products detect change, trust the earliest detection;

• IV Conservative late - If any of the change products classifies the pixel
as no change, then the decision for the reclassified product is no
change. If both products detect change, trust the latest detection.

A fifth strategy was added to represent a case in which the timing of
change detection is irrelevant. Here, the two individual products were
aggregated into two binary change-no change rasters, disregarding the
year or corresponding period of change detection. Details are visualized
in Appendix A.

Table 4 shows the reclassification strata for each strategy, which
formed the input for the stratified sampling (see next section). For each
site, the five reclassification strategies resulted in six extra change
maps, that is, four combined and two ‘timeless’ raster datasets, which
were added to the accuracy assessment for comparison with the original
GFC and BFAST products.

2.6. Validation

Sample size is important when designing validation schemes for
comparative purposes (Foody, 2009). Although our individual

Table 3
Temporal alignment of change products per study site.

Site Time frame GFC Time frame BFAST REDD+ start year Aligned before period Aligned after period

Peru 2001-2015 1999-2014 2009 2001-2008 2009-2014
Tanzania 2001-2015 2005-2015 2010 2005-2009 2010-2015
Vietnam 2001-2015 2005-2014 2009 2005-2008 2009-2014
Indonesia-A 2001-2015 2001-2014 2008 2001-2007 2008-2014
Indonesia-B 2001-2015 2001-2015 2009 2001-2008 2009-2015

Fig. 2. Rationale behind reclassification strategies.

1 Following the submissions to the UNFCCC’s REDD+ platform (UNFCCC,
2019).

2 Sometimes land use change from (natural) forest to forest plantation is
considered degradation or even enhancement of carbon stock (e.g. in Vietnam’s
REDD+ FRL submission to the UNFCCC, 2016), but here it is considered de-
forestation, since at –at least- one point in time the forest was cleared which
leads to a reflectance of bare soil.
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aggregated change raster datasets consisted of three classes (change
before, change after and no change), for simplification in the sampling
design we considered them as having a binomial distribution (either
change or no change) and used an alpha of 0.10, planned proportion
estimate of 0.5 (i.e. conservative), and 0.05 margin of error leading to a
sample size of 270 pixels per site (Foody, 2009; Cochran, 1977).

We overlaid the two input change products with each three classes,
resulting in nine possible combination values. These nine classes were
aggregated into six strata (Table 4). At each site, the 270 pixels were
randomly selected across the strata, which led to 45 sample pixels per
stratum (Fig. 3).

A validation survey was developed using Open Foris Collect (Open
Foris, 2019). The survey and samples were loaded into Google Earth via
CollectEarth and simultaneously visualised in R using the TimeSync
package (Cohen et al., 2010). Each sample was visually checked
through multiple available historical images within Google Earth (if
any), the most recent Bing Maps image, the most recent image via
Google Earth Engine, and false colour yearly composites of Landsat data
within Google Earth Engine. Within R, a time series of RGB and false
colour (NIR, SWIR1, red) snapshots were created with TimeSync. To-
gether this allowed us to determine (1) whether there was any dis-
turbance and, (2) if so, to find the timeliest disturbance date. In case of
multiple disturbances within the time series, the first disturbance was
recorded.

2.7. Accuracy assessment

After completing the validation survey, the visual judgements from
the validation survey were compared with the findings from the GFC,
BFAST and reclassified products. A map pixel was considered correct if
both the status (change or no change) and time period (before or after)
matched the visual judgement. Accuracies of the map products and the
class area proportions were estimated while taking into account the
inclusion probability of the samples per site. Since the sampling stra-
tification was a combination of GFC and BFAST results, we followed the
approaches detailed in Stehman (2014) which addresses estimating
map accuracies and class areas when the sampling strata are different
from the map classes. CIs of the estimation also followed the same
method (Stehman, 2014; Cochran, 1977). For the remainder of this
article, with ‘map-based area estimates’ we refer to area estimations
directly calculated from the maps, whereas ‘reference-based area esti-
mates’ refers to the areas as derived from the class area proportions

coming from the sample-based validation using reference data.
Next, the differences in overall, producer’s (inversely linked to er-

rors of omission) and user’s (inversely linked to errors of commission)
accuracies were assessed by calculating the relative accuracy changes,
which give insight in which reclassification strategy provides the largest
increase in accuracy compared to the original input products. Relative
accuracy change was calculated as follows:

=RA x
A A

A
( ) x y

y (1)

Where x is the alternative map product, y is the original map product
(either GFC or BFAST), and A is the corresponding accuracy (overall,
producer’s or user’s accuracy).

2.8. Performance assessment

In this study, we simplify REDD+ performance by referring to the
direction in deforestation trend over time, hence good REDD+ per-
formance corresponds to reduced average annual deforestation. We
compared the trends in average annual deforestation from before and
after the start of the REDD+ intervention (Bos et al., 2017). The impact
of ignoring data accuracy in REDD+ performance assessments was
assessed by comparing the average annual deforestation per period for
the map estimates and reference-based area estimates.

Trends and uncertainties were assessed in two ways. First, they were
visually assessed by focusing on the overlap of the CIs of the defor-
estation estimates in the before and after period. Presence of such
overlap would mean that direction and magnitude of REDD+ perfor-
mance remains uncertain. Absence of such overlap would reveal the
direction of deforestation trend and its magnitude with more certainty.
In addition to the commonly used 95% CI, we applied a 50% CI. This
means one accepts a 25% probability of overestimating the ‘true’ REDD
+ value in the monitoring period, which is similar to the adjustment
procedure under Article 5.2 of the Kyoto Protocol (UNFCCC, 2006,
cited in Grassi et al., 2008). Second, the trend uncertainty was calcu-
lated using the (joint) variances and CI of the trend itself (GOFC-GOLD,
2016).

The conservativeness principle (Grassi et al., 2008) was applied to a
case with a decreasing trend, to examine the influence of different
conservativeness standards on the final REDD+ estimate.

Table 4
Strata and classification values of different reclassification strategies.

Combination strategies Timeless strategies

I II III IV V

GFC BFAST Validation stratum sensitive – early sensitive – late conservative – early conservative – late timeless-GFC timeless-BFAST

before before 1 before before before before change change
after before 3 before after before after change change
no change before 4 before before no change no change no change change
before after 3 before after before after change change
after after 2 after after after after change change
no change after 5 after after no change no change no change change
before no change 4 before before no change no change change no change
after no change 5 after after no change no change change no change
no change no change 6 no change no change no change no change no change no change
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3. Results

3.1. Annual deforestation rates

Fig. 4 shows an overview of the annual deforestation rates for both
GFC and BFAST input products at each site before the accuracy was

assessed and thus before the area estimates of deforestation using the
reference data were calculated. Both products show overall higher an-
nual deforestation rates in the southeast Asian sites compared to the
sites in Peru and Tanzania. The deforestation trends appear similar
when comparing the two products at all sites. However, deforestation
estimates in individual years differed considerably, especially so in

Fig. 3. Study sites with validation samples and areas of agreement and conflict between the two input map products. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article).
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Vietnam (2005) and Indonesia (2006 and 2007), which might indicate
differences in timeliness of deforestation detection. In terms of REDD+
performance, these results reveal some ambiguity of the deforestation
trends. In Peru, the GFC showed slightly increasing deforestation while
according to BFAST deforestation was generally going down since the
start of the REDD+ initiative. The site in Tanzania showed no clear
performance while the steep drop in deforestation in site Indonesia-B
after 2007 might indicate positive REDD+ performance.

3.2. Accuracy

3.2.1. Overall, user’s and producer’s accuracy
For all original and reclassified map products, the error matrices

were calculated based on the comparison between the map class
(change before, change after, no change) and the visually assigned class
using the reference data. Fig. 5 shows the overall (OA), user’s (UA) and
producer’s (PA) accuracies stemming from these error matrices.

Fig. 4. Site-based comparison of annual deforestation rates. Rates represent the deforestation detected by the input products as percentage of forest cover in 2000.
Note that the x and y-scales differ per site. The vertical dotted line represents the start year of the REDD+ intervention(s) in the corresponding site and thus the
transition from the before to after period.

Fig. 5. Overall (OA), user’s (UA) and producer’s (PA) accuracies of GFC and BFAST products. All classes (i.e. change before, change after, and no change) are included.
Upper and lower extremes of whiskers represent Q3 + 1.5* interquartile range (IQR) and Q1–1.5*IQR respectively, where IQR = Q3 − Q1.

A.B. Bos, et al. Int J Appl  Earth Obs Geoinformation 80 (2019) 295–311

301



Fig. 6. Relative change of the accuracies per alternative product. The figure includes the accuracies (only PA and UA) of the before and after change classes of all
sites. Upper and lower extremes of whiskers represent Q3 + 1.5*IQR and Q1–1.5*IQR respectively, where IQR = Q3 − Q1.

Fig. 7. Influence of accuracy assessment and area estimates’ uncertainty on REDD+ performance measurements. The grey bars represent the average annual
deforested areas (reference-based area estimates), with 95%CIs. We corrected the CIs for differences in the number of years between the before and after period,
assuming variances to be equally distributed in time. The selection of best performing reclassified product is based on the highest relative accuracy change, excluding
the two V-timeless reclassified products, leading to I-sensitive early for all sites. The pink shaded areas represent the remaining degree of uncertainty, in which the
direction of the deforestation trend remains ambiguous after considering the accuracy assessment. There is no overlap in the CIs of Peru (50%CI) and Indonesia-B
(both 50%CI and 95%CI), hence the absence of a pink shaded area. The green shaded areas in those sites represent the downwards trend in deforestation, without
overlap of CIs (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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While the OAs for all products were high, this result primarily stems
from correctly detected no change areas (stable forest cover) which
spans the majority of the areas studied. The UAs and PAs, and their
corresponding errors of commission and omission respectively, were
more informative for change related classes. In general, the lower PAs
indicate that all products underestimate deforestation. When com-
paring the two input products, BFAST shows on average slightly higher
accuracies (OA, UA and PA) compared to the GFC product. We found a
general tendency of lower variation in accuracies of BFAST as com-
pared to GFC across the sites.

However, whether GFC or BFAST performed better in terms of ac-
curacy differs per study site (Appendix B). In the Peruvian site, the GFC
and BFAST accuracies were quite similar, although there were some
notable differences in PA. The Tanzanian site was characterized by low
accuracies in general, but BFAST seemed to perform better at distin-
guishing real deforestation impacts from seasonal effects, hence the
difference in UA between the two products. In both Indonesian sites the
PA of BFAST in the after class was lower compared to GFC, indicating

that the most recent changes are not well detected by BFAST. In the
Vietnamese site, this was the opposite, as the PA of BFAST out-
performed GFC in the after class.

3.2.2. Relative accuracy change
Comparing accuracies of the original map products and the re-

classified map products based on the five strategies (section 2.5), in four
out of five sites3 combining input maps following a sensitive-early
strategy led to significantly higher accuracies4 compared to the original
map products alone (Fig. 6, Appendix C and Appendix D). Still, in the
Tanzanian site, none of the reclassification strategies led to higher ac-
curacies compared to (one of the) individual datasets, due to the poor
performance of the GFC product in this study area.

Table 5
Direction and degree of deforestation trend for the GFC, BFAST and reclassification strategy I map estimates, and for the area estimates using reference data. Trend
uncertainty is indicated for the reference-based area estimates.

GFC1 BFAST1 I-Sensitive Early1 Area estimates2

change (%)3 change (%)3 change (%)3 change (%)3 Trend uncertainty with 95%CI (%.)4 Trend uncertainty with 50%CI (%.)4

Peru 12 −46 −59 −60* 63 22
Tanzania 238 397 192 10 109 37
Vietnam 89 −18 −26 −10 39 13
Indonesia-A 217 36 2 −5 45 16
Indonesia-B 40 −60 −66 −24** 12 4

1 Original map estimates before accuracy assessment.
2 Area estimates based on the reference data, see also. Fig. 7.
3 Degree of change (%) when comparing average deforestation in after period with average deforestation in before period. A negative number signifies a decrease in
(average annual) deforestation over time.
4 Uncertainty (U) of the trend in percent points is calculated as follows: U= CI(ha)/def_bef(ha). Where.
CI(ha) = sqrt(((var_bef/n_bef^2)+(var_aft/n_aft^2))*TotalArea^2)*z.
var_bef and var_aft are the variance of the area proportion of the classes before and after respectively.
n_bef and n_aft are the number of years in the before and after period respectively.
z is 1.96 and 0.67 for the 95%CI and 50% respectively.
def_bef(ha) is the estimated deforestation in the before period in hectares.

* no overlap between 50%CI of the before and after estimates (here: decreasing deforestation trends).
** no overlap between 50%CIs and 95%CIs of the before and after estimates (here: decreasing deforestation trends).

Fig. 8. Conservativeness principle ap-
plied to calculate the REDD+ estimates
for Indonesia-B. With approach A (left)
one prevents overestimation of the re-
ference estimates (before period) and
underestimation of the assessment
period (after period). Estimates in ap-
proach B (right) are derived from the
uncertainty of the trend. Numbers next
to curly brackets show the conservative
REDD+ estimate (activity data only) in
ha assessed at the 95%CI and 50%CI,
and as percentages of the trend from
the reference-based area estimates
(grey bar in B) (For interpretation of
the references to colour in this figure
legend, the reader is referred to the
web version of this article).

3 With the Tanzanian site being the exception.
4 Increases in OA and PA in the change classes, with non to only slight (in-

significant) decreases in UA, significance level 0.95. (Appendix C).
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3.3. REDD+ performance assessment

3.3.1. Revealing the deforestation trend
To assess the influence of the map products’ accuracies and area

estimate uncertainties on REDD+ performance assessments, we vi-
sualize the average annual deforestation (in ha) in the before and after
class (Fig. 7). The results show that both the magnitude and trend of
deforestation delineated from the map products differed greatly from
reference-based area estimates. In Peru, Tanzania and Vietnam, the
map-based deforestation estimates of the reclassified map product are
closer to the reference-based estimates than those of the two original
products. In addition, in four out of five cases5 the reclassified product
reveals the same deforestation trend as the reference-based area esti-
mates, although the magnitude of change differed (Table 5). This re-
flects the added value of using a combined product over a single pro-
duct, although accuracy assessment thus remains necessary. As Table 5
shows, in three out of five sites the direction of the deforestation trend
according to the best reclassified product was different from at least one
of the individual products, which would have had major implications if
results-based payments would be based on a single product alone and
disregarding the product’s map accuracies and estimate uncertainties.

The majority of the map-based estimates (both the two input pro-
ducts and reclassified product) fell outside the 95%CI of the reference-
based area estimates of both change classes, which affirms the im-
portance of doing a (sample-based) validation of the map products. At
the Indonesia-B site, the accuracy assessment elucidated the direction of
performance considerably, as the 95%CIs around the reference-based
area estimates are relatively small. Here, the average annual defor-
estation decreased from the before to the after class, while the corre-
sponding CIs did not overlap, indicating a clear downwards trend in
deforestation (green shaded area in Fig. 7, Table 5). At the site in Peru,
both CIs in the before period are relatively large, but at a 50%CI a clear
downwards trend in deforestation was found, as the CIs did not overlap.
In all other sites, uncertainty in the direction of performance remained,
since the CIs of the before and after period overlapped, as illustrated by
the pink shaded area in Fig. 7.

3.3.2. Uncertainty of the deforestation trend
In addition to the visual assessment of uncertainty of the trend, we

quantified the uncertainty of the trend’s magnitude. Therefore, we es-
timated the trend uncertainty (two rightmost columns of Table 5),
which is based on the joint variance of the two monitoring periods, and
is expressed in percent points (GOFC-GOLD, 2016).

As an example, in Vietnam the reference-based area estimates re-
vealed an average annual decrease in deforestation of 10% with a trend
uncertainty of ± 13% points at the 50%CI. Thus, at this confidence
level an actual increase in deforestation of 3% is one of the possibilities.
In Indonesia-B, the absence of overlapping confidence levels revealed a
downwards trend. According to our area estimates this average annual
decrease is 24% with a trend uncertainty of ± 12 and ± 4% points at a
95%CI and 50%CI respectively.

3.3.3. Applying the conservativeness principle to the REDD+ estimate – a
case study

As illustrated above, deforestation estimates are subject to un-
certainty, which is why one should be conservative when accounting
for REDD+ in order to increase its credibility despite those un-

certainties (Grassi et al., 2008). In other words, one should take into
account the data uncertainties to prevent overestimation of the reduced
emissions. Grassi et al. (2008) present four approaches to account for
data uncertainty using the conservativeness principle, of which we
apply two (A2 and B1 in Grassi et al., 2008, here referred to as A and B
respectively) to our deforestation estimates of Indonesia-B. As Fig. 8
shows, both the approach and confidence level chosen have a great
impact on the REDD+ estimate, with conservative estimates of reduced
annual deforestation ranging from 390 to 1082ha, or 7 to 20% re-
spectively.

4. Discussion

Most likely any deforestation map contains classification errors
(Olofsson et al., 2013), and deforestation area estimates from these
maps would thus differ from reality. We showed that a systematic ac-
curacy assessment is critically important to value the usefulness of wall-
to-wall forest cover change datasets for local REDD+ performance
measurements. Distinguishing between overall, user’s and producer’s
accuracy allowed comparison of different maps and helped to under-
stand to what extent a map is likely to over- or underestimate real
deforestation. The subsequent analysis of the variances and CIs showed
to what extent the deforestation estimates remained uncertain. Fur-
thermore, in this multi-site analysis, we assessed if, how and where a
combination of forest cover change datasets can help to increase the
accuracy and reduce the uncertainty of deforestation estimates for
measuring the performance of local REDD+ initiatives.

We found high overall accuracies but striking differences in user’s
and producer’s accuracies and area estimates, which is in line with
findings from Melo et al (2018) in Guinea-Bissau. In our multi-site
study, however, large regional differences appeared in the degree of
discrepancy between the map products, with notable differences in the
producer’s accuracies particularly. Several recent changes were missed
by BFAST leading to a lower PA in the after period, while BFAST’s PA
outperformed the GFC product in the first years of the monitoring
period. Combining forest cover change datasets using a sensitive-early
strategy generally improved accuracies and reduced uncertainties de-
spite expected trade-offs between different types of accuracies. That is,
as expected, in three of the sitesa sensitive-early strategy led to slightly
lower user’s accuracies in the change classes due to a small increase in
commission errors, but OAs and PAs increased more than the UAs de-
teriorated. Still, only in cases where the individual datasets showed
reasonable to good accuracies, combining datasets led to a map product
that was more accurate than the individual datasets, as low accuracies
in one dataset could not be compensated by high accuracies in the
other.

We found differences in timeliness of deforestation detection be-
tween GFC and BFAST, although these differences were not unidirec-
tional across all sites. As stated in section 3.2.1, in the Indonesian sites,
the lower PA of BFAST indicates omission errors in the after class, while
in the Vietnamese site, BFAST appears to detect recent changes better
than GFC does. Both GFC and BFAST appeared to have issues with a
timely detection of deforestation due to mining, leading to errors of
omission, while the visual validation with false-colour images showed
easily detectable changes. More research is needed to verify if there is a
correlation between the time series bands and corresponding vegetation
and moisture indices, and their fitness to detect mining.

5 Indonesia-A being the exception, here the area estimates showed a slight
decrease, while the I-sensitive early product showed a slight increase.
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With our stratified sampling design (section 2.4) there was less risk
of overlooking missed deforested pixels (i.e. missed omission errors), as
conflicting pixels (in which change is detected in one, but not in the
other product) were included in the sample as a separate stratum. On
the downside, this might have led to an overestimation of omission
errors due to the large area weight of stable forest classes in stratified
sampling. Although our error matrices accounted for disproportional
sampling of conflicting pixels, it is still likely that the producer’s ac-
curacies of both products were negatively influenced by this sampling
design. At the same time, due to our sampling design we may have
missed some omission errors in the non-forest class, i.e. pixels that were
(erroneously) not included in the initial forest mask but in fact defor-
ested. We focus on the (in)correct classification of change or no-change
within the (initial) forest however, rather than the initial classification
of forest or non-forest. We thus compared the change products in itself,
and not differences in (or the accuracy of) forest masks. As the re-
ference-based area estimates are only based on the reference samples
due to the applied method (Stehman, 2014), the sampling design has a
great influence on the results. Increasing the sample size further would
reduce the uncertainty in the area estimates.

We focused on the uncertainty in performance assessments as
caused by the underlying forest cover change dataset(s). Yet, un-
certainty may come from more sources, including the precision and
influence of the REDD+ initiative start year. We aggregated the (sub)
annual deforestation detections into three classes: change before REDD
+; change after REDD+ started; and no change. This rather sudden, and
mainly theoretical, transition from the before to after class may have
influenced our accuracy estimates. In practice, many local REDD+
initiatives are continuations of earlier integrated conservation and de-
velopment projects, so interventions towards protecting local forests
may predate the official start dates (Sunderlin et al., 2015). Since
transitions in forests and forest use are often gradual processes too, this
complicates performance assessments even further. Longer time series
may be needed to clearly show the impact. Finally, all accuracies cal-
culated are relative to the reference dataset, which in this case was
created through the visually validated samples. Errors in the classifi-
cation through visual validation were limited by using multiple time
series data sources (e.g. RapidEye, Landsat TM) and multiple tools (i.e.
TimeSync and CollectEarth).

It is important to note that for each site, a right-angled AOI was
defined using the initiative’s boundaries and a buffer (Fig. 3). There-
fore, the AOIs included more than the ‘pure’ REDD+ intervention
areas. Our objective was to explore the potential of combining activity
datasets for accuracy improvement, and to demonstrate the implica-
tions of ignoring data uncertainties for performance measurements,
rather than to calculate (change in) deforestation and corresponding
carbon emissions for individual sites or to assess actual performance of
specific initiatives. The results presented in section 3.3 should therefore
not be used to assess the performance of these REDD+ initiatives as
such.

5. Conclusion

We analysed the differences in accuracy and uncertainty between
two forest cover change datasets for five sites and studied if and how
combinations of datasets can increase accuracies and reduce un-
certainties in the context of local REDD+ performance assessments. We
demonstrated the use and usefulness of these global products to assess
forest cover loss at the local level.

How do forest cover loss datasets differ in terms of accuracy?
We found that accuracies differ at the site level, although on

average neither GFC nor BFAST excelled in accuracy. In the sites in
Peru, Tanzania and Vietnam, BFAST performed better, while in the
Indonesian sites, GFC achieved higher accuracies. Both GFC and BFAST
underestimated deforestation, as reflected by the lower producer’s ac-
curacies and corresponding higher errors of omission.

What is the complementarity of these forest cover loss datasets in in-
creasing accuracy?

Knowing the strengths and weaknesses of the individual products,
we assessed their complementarity by overlaying the two products
using different reclassification strategies. The strategy that led to the
highest accuracy increases and uncertainty decreases differed per site. In
four out of five cases, a sensitive-early strategy led to higher accuracies
compared to the individual products. Only when both products’ in-
dividual accuracies were already reasonable to good, a reclassification
strategy resulted in higher accuracies. Products with low accuracies
could not be ameliorated by any of our reclassification strategies.

How do map accuracy and uncertainty influence REDD+ performance
assessment?

We show the influence of input data accuracies and remaining un-
certainties in annual deforestation estimates on REDD+ performance
assessment and demonstrate the importance of accuracy assessment. As
the overlap in CIs indicated, in three out of five sites some degree of
uncertainty in the deforestation trend remained, even after accuracy
assessment. In one site, the accuracy assessment revealed a clear
downwards trend in deforestation. In one other site, the (absence of a)
clear downwards trend was dependent on the confidence level chosen.
In three sites, the annual deforestation estimates of the reclassified
product were closer to the reference-based estimates when compared to
the estimates of GFC and BFAST. Still, these map-based estimates were
mostly outside the 95%CI of the reference-based estimates, thus af-
firming the persistent need for validation. But even reference-based
estimates are subject to uncertainty, thus leading to a need for con-
servative accounting of corresponding REDD+ estimates. The growing
availability of global, readily available datasets and tools is of vital
importance as local implementers’ monitoring capacities are often
limited. Our comparative study shows that consideration of and trans-
parency about accuracies, (un)certainties and corresponding (dis)abil-
ities of datasets and tools, is of key importance if results-based pay-
ments are to be based upon performance measurements. Being
conservative in REDD+ accounting could help address these un-
certainties and thus increase the credibility of the REDD+ estimates. To
get insights into, and ultimately reduce, uncertainty, we showed that
the value of sample-based accuracy assessments cannot be overstated.
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Appendix ADecision trees for reclassification strategies

After applying an overlay of the two map products, every pixel from the sample was reclassified according to the different reclassification
strategies. The squares represent the possible pixel-level combinations of the two datasets. The rightmost column shows the decision in each of the
reclassified map products.
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Appendix B Accuracies with 95%CI for all original and reclassified products

Product Strata UA PA OA Product Strata UA PA OA

Peru GFC Change before 0.91 ± 0.08 0.40 ± 0.26 0.95 ± 0.04 Indonesia-A GFC Change before 0.85 ± 0.12 0.26 ± 0.11 0.85 ± 0.06
Change after 0.59 ± 0.11 0.73 ± 0.13 Change after 0.79 ± 0.07 0.79 ± 0.19
No change 0.96 ± 0.04 0.99 ± 0.00 No change 0.87 ± 0.08 0.99 ± 0.01

BFAST Change before 0.86 ± 0.08 0.49 ± 0.32 0.95 ± 0.04 BFAST Change before 0.80 ± 0.10 0.43 ± 0.17 0.83 ± 0.06
Change after 0.70 ± 0.12 0.54 ± 0.13 Change after 0.76 ± 0.09 0.58 ± 0.15
No change 0.96 ± 0.04 0.99 ± 0.00 No change 0.84 ± 0.08 0.96 ± 0.02

I Change before 0.84 ± 0.07 0.64 ± 0.40 0.96 ± 0.04 I Change before 0.78 ± 0.09 0.56 ± 0.21 0.88 ± 0.06
Change after 0.67 ± 0.11 0.94 ± 0.06 Change after 0.76 ± 0.08 0.84 ± 0.20
No change 0.98 ± 0.04 0.99 ± 0.00 No change 0.91 ± 0.08 0.95 ± 0.02

II Change before 0.84 ± 0.08 0.57 ± 0.36 0.96 ± 0.04 II Change before 0.77 ± 0.11 0.45 ± 0.17 0.86 ± 0.06
Change after 0.58 ± 0.10 0.97 ± 0.06 Change after 0.70 ± 0.07 0.86 ± 0.20
No change 0.98 ± 0.04 0.99 ± 0.00 No change 0.91 ± 0.08 0.95 ± 0.02

III Change before 0.97 ± 0.02 0.33 ± 0.21 0.94 ± 0.04 III Change before 0.91 ± 0.06 0.23 ± 0.09 0.82 ± 0.06
Change after 0.89 ± 0.09 0.30 ± 0.05 Change after 0.96 ± 0.06 0.52 ± 0.13
No change 0.94 ± 0.04 1.00 ± 0.00 No change 0.80 ± 0.07 1.00 ± 0.00

IV Change before 1.00 ± 0.00 0.26 ± 0.16 0.94 ± 0.04 IV Change before 1.00 ± 0.00 0.13 ± 0.05 0.81 ± 0.06
Change after 0.54 ± 0.07 0.33 ± 0.06 Change after 0.80 ± 0.05 0.54 ± 0.13
No change 0.94 ± 0.04 1.00 ± 0.00 No change 0.80 ± 0.07 1.00 ± 0.00

V-GFC Change 0.86 ± 0.06 0.54 ± 0.27 0.95 ± 0.04 V-GFC Change 0.96 ± 0.04 0.62 ± 0.14 0.88 ± 0.06
No change 0.96 ± 0.04 0.99 ± 0.00 No change 0.87 ± 0.08 0.99 ± 0.01

V-BFAST Change 0.89 ± 0.06 0.55 ± 0.27 0.96 ± 0.04 V-BFAST Change 0.84 ± 0.06 0.55 ± 0.13 0.84 ± 0.06
No change 0.96 ± 0.04 0.99 ± 0.00 No change 0.84 ± 0.08 0.96 ± 0.02

Tanzania GFC Change before 0.41 ± 0.15 0.05 ± 0.05 0.83 ± 0.08 Indonesia-B GFC Change before 0.97 ± 0.05 0.60 ± 0.08 0.94 ± 0.01
Change after 0.26 ± 0.15 0.10 ± 0.08 Change after 0.74 ± 0.08 0.84 ± 0.09
No change 0.86 ± 0.08 0.97 ± 0.01 No change 0.96 ± 0.01 0.99 ± 0.01

BFAST Change before 0.90 ± 0.10 0.14 ± 0.12 0.89 ± 0.08 BFAST Change before 0.79 ± 0.08 0.81 ± 0.08 0.93 ± 0.01
Change after 0.71 ± 0.15 0.50 ± 0.32 Change after 0.92 ± 0.08 0.50 ± 0.09
No change 0.90 ± 0.08 0.99 ± 0.01 No change 0.94 ± 0.01 0.97 ± 0.01

I Change before 0.67 ± 0.11 0.18 ± 0.15 0.87 ± 0.08 I Change before 0.81 ± 0.08 0.98 ± 0.03 0.97 ± 0.01
Change after 0.54 ± 0.14 0.54 ± 0.34 Change after 0.86 ± 0.08 0.98 ± 0.02
No change 0.91 ± 0.08 0.96 ± 0.01 No change 1.00 ± 0.00 0.96 ± 0.01

II Change before 0.67 ± 0.13 0.15 ± 0.13 0.87 ± 0.08 II Change before 0.80 ± 0.08 0.87 ± 0.03 0.96 ± 0.01
Change after 0.53 ± 0.14 0.54 ± 0.34 Change after 0.76 ± 0.07 1.00 ± 0.00
No change 0.91 ± 0.08 0.96 ± 0.01 No change 1.00 ± 0.00 0.96 ± 0.01

III Change before 0.77 ± 0.10 0.04 ± 0.03 0.85 ± 0.08 III Change before 0.98 ± 0.02 0.54 ± 0.05 0.91 ± 0.01
Change after 0.96 ± 0.06 0.06 ± 0.04 Change after 0.96 ± 0.06 0.34 ± 0.03
No change 0.85 ± 0.08 1.00 ± 0.00 No change 0.91 ± 0.01 1.00 ± 0.00

IV Change before 1.00 ± 0.00 0.01 ± 0.01 0.85 ± 0.08 IV Change before 1.00 ± 0.00 0.43 ± 0.04 0.90 ± 0.01
Change after 0.71 ± 0.06 0.06 ± 0.04 Change after 0.66 ± 0.05 0.36 ± 0.04
No change 0.85 ± 0.08 1.00 ± 0.00 No change 0.91 ± 0.01 1.00 ± 0.00

V-GFC Change 0.42 ± 0.16 0.11 ± 0.07 0.84 ± 0.08 V-GFC Change 0.94 ± 0.04 0.77 ± 0.06 0.95 ± 0.01
No change 0.86 ± 0.08 0.97 ± 0.01 No change 0.96 ± 0.01 0.99 ± 0.01

V-BFAST Change 0.91 ± 0.08 0.43 ± 0.22 0.90 ± 0.08 V-BFAST Change 0.84 ± 0.06 0.70 ± 0.06 0.93 ± 0.01
No change 0.90 ± 0.08 0.99 ± 0.01 No change 0.94 ± 0.01 0.97 ± 0.01

Vietnam GFC Change before 0.99 ± 0.03 0.29 ± 0.08 0.80 ± 0.06
Change after 0.68 ± 0.06 0.43 ± 0.16
No change 0.81 ± 0.08 1.00 ± 0.00

BFAST Change before 0.99 ± 0.02 0.73 ± 0.17 0.89 ± 0.06
Change after 0.88 ± 0.07 0.59 ± 0.21
No change 0.88 ± 0.08 1.00 ± 0.01

I Change before 0.98 ± 0.02 0.80 ± 0.18 0.92 ± 0.06
Change after 0.89 ± 0.07 0.68 ± 0.24
No change 0.91 ± 0.08 1.00 ± 0.01

II Change before 0.99 ± 0.03 0.62 ± 0.14 0.89 ± 0.06
Change after 0.73 ± 0.06 0.68 ± 0.24
No change 0.91 ± 0.08 1.00 ± 0.01

III Change before 0.99 ± 0.02 0.40 ± 0.09 0.80 ± 0.06
Change after 0.93 ± 0.07 0.33 ± 0.12
No change 0.78 ± 0.07 1.00 ± 0.00

IV Change before 1.00 ± 0.00 0.22 ± 0.05 0.78 ± 0.06
Change after 0.64 ± 0.05 0.34 ± 0.12
No change 0.78 ± 0.07 1.00 ± 0.00

V-GFC Change 1.00 ± 0.00 0.47 ± 0.10 0.84 ± 0.06
No change 0.81 ± 0.08 1.00 ± 0.00

V-BFAST Change 0.99 ± 0.02 0.69 ± 0.15 0.90 ± 0.06
No change 0.88 ± 0.08 1.00 ± 0.01
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