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A B S T R A C T

Bamboo has emerged as a promising option for climate change mitigation due to its rapid growth, versatility, and 
renewability. However, in Nepal, there exists a substantial knowledge gap on carbon (C) stock and the influence 
of aspect and elevation on C stock of bamboo species, particularly in areas outside forests where bamboo is 
dominant. Therefore, this research was conducted to quantify C stock and aspect-elevation influence on the C 
stock of Bambusa nutans subsp. cupulata outside the forest area. For this study, three elevation zones (0–400 m, 
400–800 m, 800–1200 m) and two aspects (East and West) were considered. A total of 30 square plots having a 
100 m2 area were established utilizing purposive sampling due to the scattered distribution of bamboo. Non- 
destructive methods were applied to measure bamboo culm diameters, while composite soil samples were sys
tematically collected from 30 cm depth using soil augers and core samplers. Clump density (400 ha⁻1), culm 
density (42,480 ha⁻1) and culm diameter (6.82 ± 0.41 cm) were highest at middle elevations (p < 0.05), with no 
significant difference due to aspect (p > 0.05). The total mean C stock potential of B. nutans was 148.73 ± 3.43 
Mg ha⁻1. Our results indicated a significant difference in C stock among elevation zones, with middle elevation 
zones (161.77 ± 6.74 Mg ha-1) exhibiting notably higher C stock compared to both lower (150.26 ± 2.69 Mg ha- 

1) and higher (134.17 ± 4.26 Mg ha-1) elevation zones. Furthermore, East aspect was found to have significantly 
(p < 0.05) higher soil organic C stock (18.52 ± 1.32 Mg ha-1) compared to West aspect (11.4 ± 1.01 Mg ha-1). 
Further research is needed to explore other complex environmental interactions with C stock potential for better 
climate change strategies. Incorporating bamboo C into Nepal’s REDD+ initiative can be crucial for optimizing 
opportunities to earn C credits.

1. Introduction

In the contemporary era, climate change has emerged as a pressing 
issue that has garnered heightened attention from scientists, resource 
managers, and policymakers (Abbass et al., 2022). Among the contrib
utors to global climate change, one significant cause stems from the 
atmospheric conversion of carbon (C) released from deforested areas 
into carbon dioxide (CO2) (Condit, 2008; Pinto et al., 2010). According 
to international climate agreements, the capacity of forests to naturally 
remove C from the atmosphere is crucial for reducing climate change 

(IPCC, 2007). Consequently, the current focus on estimating forest C 
stock is of tremendous interest (Djomo et al., 2016). About 31 % of the 
world’s total land area, is covered by forests, which store 289 gigatons of 
C in only their biomass (FAO, 2011). However various anthropogenic 
activities such as extensive forest clearing for agricultural use, over
grazing, and exploitation of the existing forest for fuel wood, fodder, and 
construction materials have resulted in a reduction of forest area with 
significant environmental degradation (Keenan et al., 2015). Therefore, 
it becomes urgent to call for action and another viable alternative for the 
fight against climate change.
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Bamboos, belonging to the subfamily Bambusoideae of the grass 
family Poaceae, encompasses over 1500 species distributed across 110 
genera globally (Ahmad et al., 2021; Canavan et al., 2016; McClure, 
1966). Renowned for their rapid growth, some bamboo species can 
reach towering heights of up to 30 m and diameters of 35 cm, making 
them among the fastest-growing plants on Earth (Moza and Koul, 2022). 
Encompassing 3.2 % of the world’s total forest area, bamboo stands play 
a significant role in global ecosystems (Lobovikov et al., 2007). With a 
global distribution between 51⁰N and 47⁰S, primarily in tropical, sub
tropical, and equatorial regions, bamboos thrive across diverse altitudes, 
ranging up to 4000 m above sea level (m.a.s.l), with Asia hosting the 
largest number of species (Ahmad et al., 2021). Adaptable to various soil 
types and thriving in rainfall ranges of 750–1000 mm, bamboo, 
including species like Dendrocalamus strictus Nees, exhibit remarkable 
resilience (Rojas-Sandoval, 2022). The temperature range for bamboo 
growth spans from 8 to 36 ◦C, with some species such as Fargesia rufa T. 
P.Yi capable of withstanding temperatures as low as − 20 ◦C 
(Koepke-Hill et al., 2020).

Bamboo has emerged as a pivotal component in ecosystems, 
providing essential services, particularly C sequestration (Ayer et al., 
2023a; Paudyal et al., 2022). Bamboo can act as a C sink due to its rapid 
and dense growth, adaptability to diverse soil types and climates, and its 
renewable nature (Dransfield and Widjaja, 1995). C storage and 
sequestration rates vary globally among different bamboo species, as 
reported by Dwivedi et al. (2019), revealing C storage within the range 
of 30 to 145 t ha− 1, depending on the species, with C sequestration rates 
ranging from 1.3 to 24 t ha− 1 year− 1. Research conducted by the In
ternational Bamboo and Rattan Organization (INBAR) underscores the 
potential of well-managed bamboo ecosystems to serve as efficient C 
sinks, potentially surpassing other vegetation types under comparable 
conditions (INBAR, 2014). For instance, the rapid growth of a Moso 
bamboo (Phyllostachys edulis) forest in China resulted in the sequestra
tion of 5.10 Mg C ha− 1 of carbon during a single year, surpassing rates 
observed in a tropical mountain rainforest and a 5-year-old stand of 
Cunninghamia lanceolata, a fast-growing Chinese fir (King et al., 2021; 
Yuen et al., 2017). Abebe et al. (2021) reported mean C stock of Oxy
tenanthera abyssinica forests ranged from 152.5 Mg C ha− 1 to 559.8 ton 
CO2 ha− 1 in Northern Ethiopia. Similarly, Jember et al. (2023) estimated 
mean biomass C of the Oldeania alpine in different niche; riverbank 
(87.52 Mg C ha− 1), woodland (104.97 Mg C ha− 1 and homestead 
(111.56 Mg C ha− 1) in Northwestern Ethiopia. Furthermore, Ghale 
et al. (2020) recorded mean C of 124.98 ton ha-1 outside the forest area 
in Annapurna Conservation Area, Nepal. These studies suggest that 
bamboo holds promise as a potential alternative for global climate 
change mitigation.

Among various environmental variables, aspect and elevation play 
crucial roles in shaping the C stock dynamics of any forest type, 
including bamboo forests (Fang et al., 2018; Yuen et al., 2017). Previous 
studies have highlighted the importance of aspect in influencing vege
tation patterns and C stock potential within bamboo forest ecosystems 
(Deng et al., 2016; Fang et al., 2018; Niu et al., 2020; Qian et al., 2019). 
In China, Niu et al. (2020) revealed significant variations in C stocks 
among different aspects, with the East aspect exhibiting significantly 
higher C stocks than the West and North aspects. Similarly, Qian et al. 
(2019) conducted a study to understand the effect of slope aspect on 
species functional groups and species diversity in the alpine meadow of 
the East Qilian Mountains and reported that the East aspect had higher C 
stocks compared to the North and West aspects. Another study by Deng 
et al. (2016) was conducted to investigate the effects of different slope 
positions on the growth of Phyllostachys pubescens and soil factors in 
China and found that the better bamboo growth in sunny slopes as 
compared to the shade slopes. Fang et al. (2018) studied the impact of 
aspect on soil organic carbon (SOC) content within bamboo ecosystems 
and reported that the northern aspect contained a statistically insignif
icant increase in SOC compared to the southern aspect. Similarly, 
elevation also plays a pivotal role in shaping the environmental 

characteristics of a location, leading to significant alterations in key 
factors such as temperature, precipitation, atmospheric pressure, solar 
radiation, and wind velocity (Djukic et al., 2010; Navarro-Serrano et al., 
2020; Takeuchi et al., 2011;) ultimately affecting plant growth. Fang 
et al. (2018), Njeru et al. (2017) and Dai and Huang (2006) reported a 
positive and linear correlation between SOC stocks and elevation. 
Griffiths et al. (2009) noted that as elevation increases (typically from 
low to high altitudes, e.g., 0–200 m to 400–800 m), various soil prop
erties change. Recent research by Li et al. (2013) also reinforces the 
relationship between elevation and SOC content in Moso bamboo for
ests. However limited studies have reported variation in bamboo C stock 
across elevation and aspect outside forest area (Ghale et al., 2020). 
Ghale et al. (2020) found higher C stock in 1000–1200 m (137.32 ton 
ha-1) elevation range than 1200–1400 m (123.796 ton ha-1) and 
1400–1600 m (113.824 ton ha-1) outside forest area in Annapurna 
Conservation Area, Nepal.

In Nepal, 12 genera and >53 species of bamboo have been reported 
(Das, 2002; Ghimire, 2008). Bamboos can be found in all ecological 
zones of Nepal: the Terai, Hill, and Mountains (Karki and Karki, 1996). 
While they are widespread throughout the country, they are particularly 
abundant in Eastern Nepal (Karki and Karki, 1996). Dendrocalamus 
strictus, Bambusa nutans, Bambusa balcooa, Bambusa tulda, Den
drocalamus giganteus, Dendrocalamus hamiltonii, and Dendrocalamus 
hookerii are the main bamboo species found in Nepal (Karki and Karki, 
1996; MoFSC, 2004). Although such diversity and availability of 
bamboo species in Nepal, there has been limited research on bamboo in 
Nepal (Ayer et al., 2023a). Significant studies have been carried out to 
estimate biomass and C stock potential of different tree species in 
different land use types in Nepal (Aryal et al., 2018; Ayer et al., 2023b; 
Baral et al., 2009; Gautam et al., 2023; Joshi et al., 2023; Maharjan et al., 
2024; Pandey and Bhusal, 2016). However, there are few studies carried 
out to estimate the biomass (Oli and Kandel, 2005, 2006; Oli, 2005,) and 
C stock (GC and Bhandari, 2010; Ghale et al., 2020) of different bamboo 
species in Nepal. Additionally, uncertainties persist regarding the pre
cise extent of bamboo’s C stock potential outside the forest area, 
particularly about influential factors such as elevation and aspect. 
Similarly, REDD+ scheme of Nepal which sells C credit from community 
forests also excludes bamboo forests regarding data unavailability of C 
stock by bamboo species in Nepal. To address these gaps, this study aims 
to quantify the C stock and assess the impact of elevation and aspect on 
the C stock potential of Bambusa nutans subsp. cupulata outside forest 
areas in Eastern, Nepal. Specifically, this research seeks to answer the 
following questions: i) What is the C storage potential of studied bamboo 
species?, ii) How does the C stock vary at different elevation ranges 
outside forest areas?, and iii) How does the aspect influence the C stock 
of the studied bamboo species? We hypothesize that elevation and 
aspect have a significant effect on C storage potential of studied bamboo 
species outside forest area. This research is not only scientifically rele
vant but also has practical applications, such as informing sustainable 
land management practices and contributing to climate change mitiga
tion efforts. Furthermore, it addresses a notable knowledge gap of C 
stock potential to incorporate bamboo in prospective C trade for Nepal.

2. Methodology

2.1. Study area

This study was carried out along the altitudinal gradient of Katari 
municipality (26.8372◦ N latitude and 86.3213◦ E longitude) of 
Udayapur, Eastern Nepal (Fig. 1). Both the Mahabharat and Shiwalik 
hills encircle the Udayapur district from the north and the south, and the 
two hills converge in the West to create the Udayapur valley 
(Lamichhane and Karna, 2009). The elevation of the district is moder
ately steep ranging from lower tropical (below 300 m.a.s.l) to subtrop
ical tropical (ranging from 300 to 2000 m.a.s.l). The site has a tropical 
and subtropical climate with an annual minimum temperature of 16.8 

S. Ayer et al.                                                                                                                                                                                                                                     



Trees, Forests and People 18 (2024) 100653

3

◦C, and annual maximum temperature of 28.1 ◦C, and an annual rainfall 
is about 1349.2 mm (DoHM, 2017). The study area consists of four forest 
types: Hill Sal Forest, Chir Pine Forest, Chir Pine-Broadleaved Forest, 
and Lower Temperate Oak Forest. Major species include Shorea robusta, 
Terminalia chebula, Adina cordifolia, Acacia catechu, Terminalia bellerica, 
Bombax ceiba, Dalbergia sissoo, Schima wallichii, Castanopsis indica, Pinus 
roxburghi, Alnus nepalensis, Rhododendron arboreum, Lyonia ovalifolia, 
Myrica esculenta, etc. (Lamichhane and Karna, 2009; Ayer et al., 2023c; 
Khamcha et al., 2023).

Farmers in Nepal generally lack awareness regarding the potential of 
bamboo plantations to support shade-loving agricultural crops (Ayer 
et al., 2023a). Consequently, bamboo stands are often found in mar
ginal, degraded fields, and slopes. Moreover, there exists a common 
belief among farmers that bamboo requires minimal care and manage
ment practices (Ghimire, 2008). Bamboo culms are typically harvested 
when they reach maximum size and strength, typically between 3 and 5 
years of age (Ayer et al., 2023a). Hence, the study plots in our research 
were characterized by spontaneously grown bamboo clumps with scat
tered distribution, situated in marginal, degraded, and sloped fields 
without association with other plant species.

2.2. Sampling design

In the preliminary survey phase of the research, we conducted a 
comprehensive reconnaissance survey to identify suitable areas where 
bamboo species, specifically B. nutans, could be found within the study 
area. To enhance the understanding of potential bamboo habitats, we 
engaged in key informant surveys with various stakeholders, including 
community forest user committees, local political leaders, and officials 
from the Division Forest Office Udayapur (Triveni), Nepal. These in
teractions were instrumental in pinpointing areas with a high likelihood 
of bamboo presence, ensuring the effectiveness of the subsequent data 

collection efforts.
Regarding the sampling design, we employed a purposive sampling 

approach, given the relatively scattered distribution of bamboo species. 
The research design was structured to encompass three distinct 
geographic altitudinal zones, specifically ranging from 0 to 400 m.a.s.l 
(lower elevation), 400 to 800 m.a.s.l (middle elevation), and 800 to 
1200 m.a.s.l (higher elevation). Additionally, we considered two pre
dominant aspects; East and West to comprehensively assess the influ
ence of aspect on C stock potential. Altogether, the sampling framework 
consisted of a total of 30 sampling plots (Fig. 2). Within the three 
elevation ranges, 10 plots were systematically chosen for data collection 
in each range. Simultaneously, for each aspect, 15 plots were designated 
for data collection. This meticulous selection process allowed us to 
capture the variability in C stock potential across different elevation 
zones and aspect orientations (Fig. 2).

2.3. Primary data collection

2.3.1. Biophysical measurement
For bamboo measurement, circular plots, each measuring 100 m2 

with a radius of 5.64 m, were established to conduct the inventory (Huy 
and Long, 2019). Circular plots are more efficient since the real 
circumference of the plot is smaller than that of square or rectangular 
plots, limiting the amount of bamboo culms on the edge (Huy and Long, 
2019). Culms in each plot were categorized according to their ages, and 
then counted. Since it is not possible to measure each culm in a plot, a 
total of 18 culms per plot (6 culms per age group) were randomly 
selected following the method by Abebe et al. (2021) and Jember et al. 
(2023). Culm diameter was measured at 1.3 m height using diameter 
tape. The culm age was determined based on the exterior color of the 
culm, features of the culm sheath, and the development of branches and 
leaves (Abebe et al., 2021; Singnar et al., 2017).

Fig. 1. Map showing Study area i.e. Katari Municipality of Udayapur district.
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2.3.2. Soil sample collection
We collected soil samples from 0 to 30 cm depth across the entire set 

of sampling plots. Soil samples from this depth are adequate as most of 
the SOC is concentrated at 0–30 cm (IPCC, 2003). It is also difficult to 
collect samples from more than a 30-cm depth due to shallow soils and 
the occurrence of rocks in the subsurface (Subedi et al., 2010). Soil 
samples from four subplots within each main plot were combined from 
these subplots to create composite samples. These composite samples 
were stored in labeled zip lock bag and transported to the laboratory 
promptly after collection to maintain sample integrity and freshness. 
Hence, 60 soil samples for determining SOC (%) and 60 samples for bulk 
density were collected at the study site. This comprehensive soil sam
pling strategy, involving replicates from each elevation level and aspect 
orientation, yielded a total of 120 soil samples (60 for SOC% and 60 for 
bulk density).

2.4. Data analysis

2.4.1. Calculation of above and belowground biomass and C stock
The aboveground bamboo biomass was calculated using the 

following allometric equation which takes into account the diameter at 
breast height (DBH) (Yuen et al., 2017) 

AGB = 0.269 × DBH2.017 (1) 

Where, AGB = aboveground bamboo biomass (Kg), DBH= diameter 
at breast height.

Similarly, 25% of AGB was used to estimate the BGB (Yuen et al., 
2017).

The BGB will be then computed as follows: 

BGB = AGB × 0.25 (2) 

Finally, bamboo biomass C storage (Mg ha-1) was calculated from 

bamboo biomass (AGB and BGB), as follows (IPCC, 2006) 

Bamboo biomass C = C fraction (0.47) × (AGB+BGB) (3) 

2.4.2. Calculation of SOC stock
We determined percentage of soil organic matter using Walkley and 

Black method (Walkley and Black, 1934) and SOC (%) was estimated 
using a ration of 58% of soil organic matter. Undisturbed soil core 
samples were collected from 0 to 30 cm depth using a core sampler 
having 22.9 cm circumference. Soil cores were oven-dried at 105◦C for 
24 h. The amount of organic C stored in soil (Mg ha-1) was derived by 
using the following formula (Pearson et al., 2007) 

SOC stock
(
Mg ha− 1) = BD × d × (% SOC) × 10000 (4) 

Where, SOC, BD, d,% SOC represents soil organic carbon stock per 
unit area (Mg ha− 1), soil bulk density (g cm-3), depth of the sampled soil 
layer (cm), soil organic carbon concentration (%) respectively. Bulk 
density (BD) was calculated from the following formula (Pearson et al., 
2007) 

BD = MS/VC (5) 

Where BD, MS, VC represent Bulk density (g cm-3), Mass of the dried 
soil (g), and volume of core sampler (cm3) respectively.

2.4.3. Statistical analysis
Before conducting statistical analysis, we ensured that our data met 

the assumptions for parametric tests by performing Shapiro’s test for 
normality and Bartlett’s test for equal variance. Both tests yielded non- 
significant p-values (p > 0.05), indicating satisfactory conditions for 
normality and equal variance. Our investigation into the impact of 
elevation and aspect (independent variables) on carbon stock (depen
dent variable) followed a multifaceted approach. Initially, one-way 

Fig. 2. A) Elevation map of study area B) Aspect map of study area. These maps are prepared on ArcGis 10.8 by using Digital Elevation Model from US Geological 
Service webpage (https://earthexplorer.usgs.gov/).
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ANOVA tests were executed for each carbon pool to assess the influence 
of elevation on individual carbon pools. Recognizing potential interac
tion effects between elevation and aspect, we conducted a two-way 
ANOVA to explore interaction effects and determine if their joint in
fluence on carbon stock was significant. Additionally, t-tests were 
employed to compare mean carbon pool values between East and West 
aspects. Microsoft Excel 2016 was used for descriptive analysis, and R 
software (version 4.2.3) was utilized for statistical analyses.

3. Results

3.1. Stand characteristics

Table 1 represents the stand characteristics of bamboos outside the 
forest area across elevation and aspect categories. Higher clump and 
culm density was observed in middle elevation and East aspect. How
ever, the difference in culm density across elevation category was only 
statistically significant (p < 0.01). In terms of culm age composition, 
1–2-year-old bamboo culms were the most common across all elevation 
and aspect categories followed by 5–6 and 3–4 year-old culms. Elevation 
wise, thicker bamboo culms were observed in middle elevation (6.82 ±
0.41 cm) followed by lower elevation (6.79 ± 0.25 cm) and higher 
elevation (6.21 ± 0.34 cm) . Aspect wise, bamboo culm on East-facing 
slopes (6.59 ± 0.26 cm) had a higher thickness than West-facing 
slopes (6.62 ± 0.31 cm). However, there was no significant difference 
in DBH among aspect category (p > 0.05).

3.2. Carbon stock potential

Aboveground C pool had the highest mean C stock (106.17 ± 2.71 
Mg ha-1), followed by the belowground C pool (27.60 ± 0.70 Mg ha-1) 
and the SOC pool (14.96 ± 1.05 Mg ha-1) (Fig. 3). Total C stock that 
represents sum of all C pools showed a range from 114.32 Mg ha-1 to 
184.68 Mg ha-1 having mean value of 148.73 ± 3.43 Mg ha-1 (Fig. 3).

3.3. Influence of elevation on carbon stock

Fig. 4 shows pool wise C distribution across elevation categories. 
Aboveground C stock was found higher at middle elevation (114.10 ±
5.75 Mg ha-1) followed by lower elevation (110.59 ± 2.37 Mg ha-1) and 
higher elevation (93.82 ± 2.50 Mg ha-1). Belowground C stock exhibited 
greater carbon stock at middle elevation (29.67 ± 1.50 Mg ha-1) fol
lowed by lower elevation (28.75 ± 0.62 Mg ha-1) and higher elevation 
(24.39 ± 0.65 Mg ha-1). Similarly, SOC stock was higher at Middle 
elevation (18.01 ± 1.75 Mg ha-1) compared to both higher elevation 
(15.96 ± 1.62 Mg ha-1) and lower elevation (10.92 ± 1.41 Mg ha-1).

Overall, TC demonstrated a similar pattern with middle elevation 

(161.77 ± 6.74 Mg ha-1) having highest C stock than lower elevation 
(150.26 ± 2.69 Mg ha-1) and higher elevation (134.17 ± 4.26 Mg ha-1) 
with significant differences (p < 0.05) in C stock among elevation cat
egories in each C pools. Post hoc analysis further revealed significant 
differences in aboveground, belowground and total C stock between 
lower-middle, middle-higher and lower-higher pairs.

3.4. Influence of aspect on carbon stock

Fig. 5 shows pool wise C distribution across East and West categories. 
Aboveground C stock was found higher in West aspect (107.13 ± 4.23 
Mg ha-1) than East aspect (105.20 ± 3.52 Mg ha-1). Similarly, below
ground C stock was higher in the West aspect (27.85 ± 1.10 Mg ha-1) 
than East aspect (27.35 ± 0.92 Mg ha-1). However, these differences in 
aboveground C and belowground C were not statistically significant (p >
0.05). In contrast, SOC stock showed significant difference (p < 0.05) 
with its higher value in East aspect (18.52 ± 1.32 Mg ha-1) than West 
aspect (11.4 ± 1.01 Mg ha-1). However, total C stock levels showed no 
significant differences (p > 0.05), between East aspect (151.08 ± 4.37 
Mg ha-1), and West aspect (146.38 ± 5.37 Mg ha-1).

3.5. Interaction effect of elevation and aspect on c stock

Aboveground C, belowground C, and total C stock were notably 
higher at middle elevation with West aspect (Fig. 6). In contrast, SOC 
stock was notably higher at middle elevation with East aspect. However, 
these interactions had no statistically significant effect on C stock across 
any pool (p > 0.05) (Table 2).

4. Discussion

4.1. Stand characteristics

Our study observed higher bamboo clump and culm density in the 
middle elevation category (Table 1). This could be attributed to different 
harvesting intensity of bamboo culms in different elevation categories 
(Abebe et al., 2021). Lower elevations experience intense human pres
sure due to higher population density and extensive agricultural activ
ities (Mammides, 2020). Strict management policies in these regions 
often limit the felling of multipurpose trees such as Shorea robusta 
(Basnyat, 2021), leading communities to rely heavily on bamboo for 
their needs. Although less populated, higher elevations face localized 
intensive exploitation of bamboo due to fewer alternative timber re
sources and difficult topography. In contrast, the lower dependence on 
bamboo in middle elevations, combined with access to a variety of forest 
products, supports a more balanced and sustainable use of resources. 
This could also affect mean size (diameter) of culm which we observed 
higher in the middle elevation in the study area (Table 1). Our study 
observed higher culm density of the young and overmatured age group 
than 3–4 years age group (Table 1). This finding contrasts with Abebe 
et al. (2021) and Jember et al. (2023) in Ethiopia where they reported 
higher proportion of bamboo culm in 3–4 years age group. This could be 
due to selective harvesting of mature and thicker culms with no sus
tainable management practices in the study area. This is common in 
Nepal as farmers believe that bamboo requires minimal care and man
agement practices (Ayer et al., 2023a). This selective harvesting and 
over harvesting of mature bamboo culms could hinder the structural 
integrity and reproductive capacity of the bamboo stand (Franklin, 
2006; Nath et al., 2012). The removal of these mature culms disrupts the 
natural age distribution, resulting in a stand dominated by younger and 
overmatured, less robust culms which was also observed in our study 
(Table 1). With respect to aspect, we found no significant difference in 
mean DBH, clump and culm density which could be due to lack of 
bamboo management practices in the study area. When bamboo stands 
across different aspects are managed similarly or are totally unmanaged, 
this can reduce potential differences in studied parameters that could 

Table 1 
Stand structure of bamboo stands of the study area.

Category Clump 
(ha-1)

Culm (ha-1) DBH (cm)

1–2 
Yrs

3–4 
Yrs

5–6 
Yrs

Total

Elevation
Lower 367a 19,389 1133 9044 29567a 6.79 ±

0.25a

Middle 400a 28,520 2200 11,760 42480a 6.82 ±
0.41a

Higher 300a 2440 1180 1120 4740b 6.21 ±
0.34b

Aspect
East 374a 18,507 1440 6500 26447a 6.59 ±

0.26a

West 335a 14,750 1600 8050 24400a 6.62 ±
0.31a

Different letters represent significant differences and similar letters represent no 
significant difference at 0.05 significance level.

S. Ayer et al.                                                                                                                                                                                                                                     



Trees, Forests and People 18 (2024) 100653

6

arise from aspect-related environmental factors.

4.2. Carbon stock potential of B. nutans

The aboveground C content was 106.17 Mg ha⁻1 (Fig. 3) which is 
higher than prior estimates for the same species reported by Kumar et al. 
(2022) (59.69 Mg ha⁻1) and (Kaushal et al. (2016) (98.32 Mg ha⁻1) in 
managed bamboo plantation in India. Similarly, Lou et al. (2010) re
ported lower aboveground C stock (25 to 32 t ha− 1) from 10-year-old 
Moso bamboo (P. pubescens) plantation in China. Another Study con
ducted in a four-year-old mixed village bamboo plantation (B. vulgaris, 
B. balcooa, B. cacharensis) in India shows that the aboveground C stock 
was about 61.05 t ha-1 (Nath et al., 2009). These discrepancies might be 
attributed to variations in local climatic environment, stand age, species 
type, and management regimes (Rinnan et al. 2011; Yuen et al., 2017).

SOC stock was found to be 14.96 Mg ha⁻1 which falls below the range 
(70–200 Mg C ha⁻1) based on a meta-study of 184 bamboo C studies 
(Yuen et al., 2017). SOC values are also lower than those reported by 
both Tariyal (2014) (57.28 Mg ha⁻1) and Sharma et al. (2020) (51.15 Mg 
ha⁻1) in India. Higher SOC stock (36.68 Mg ha⁻1) was observed in Moso 
bamboo forests in China (Fang et al., 2018). Additionally, higher content 
of SOC i.e. 70 Mg ha⁻1 in Oxytenathera abyssinica bamboo species in 
Ethiopia (Abebe et al., 2021). Similarly, the average C density of 
managed and abandoned bamboo stands were 84.9 Mg C ha− 1 and 
115.1 Mg C ha− 1 for Phyllostachys pubescens and 24.1 Mg C ha− 1 and 
46.4 Mg C ha− 1 for Phyllostachys bambusoides, respectively in Japan 
(Yamamoto and Inoue, 2023). Lower SOC stock in this study (Fig. 3) 
might be due to variations in climatic conditions, such as temperature 
and precipitation, which can influence rates of organic matter decom
position and C storage in soils (Huy et al., 2019). Moreover, lower SOC 
stock may be attributed to the fact that our study area lies outside the 
forest area. Prior studies also reported lower SOC stock in bamboo 
stands outside forests than those of both evergreen broad-leaved forests 
and bamboo mixed forests (Li et al., 2018; Song et al., 2020; Zhao et al., 
2017).

The estimated total C stock was found to be 148.73 Mg ha⁻1 (Fig. 3) 

which is higher than tropical mountain rain forest because of fast 
growing nature of bamboo (Zhou and Jiang, 2004). This figure falls 
within the range of values i.e., 94–392 Mg C ha⁻1 for C stored in bamboo 
plant biomass and soil within bamboo ecosystems worldwide (Yuen 
et al., 2017). Interestingly, the observed value in this study exceeds the C 
stock value reported from some timber-based forests in Nepal (Aryal 
et al. 2013; Ayer et al., 2023b; Gurung et al., 2022; Shrestha and Dev
kota, 2013; Thapa-Magar and Shrestha, 2015; Sharma et al., 2020). For 
instance, Sharma et al. (2020) reported C stock value of 102.1 Mg ha-1 in 
Chir Pine (Pinus roxburghii Sarg.) plantation forest of Kathmandu Valley, 
central Nepal. Shrestha and Devkota (2013) found 70.70 Mg C ha-1 in 
the Pakhapani Pine forest in Salyan District, Nepal. Similarly, mean C 
stock of 120 Mg C ha− 1 was reported in the community-managed Hill 
Shorea robusta forests of Central Nepal (Thapa-Magar and Shrestha, 
2015). This could be due to bamboo’s rapid growth, dense stems, and 
high C sequestration potential (Ayer et al., 2023a; Jember et al., 2023). 
Furthermore, differences in meteorological and terrain conditions can 
also significantly impacts the growth of bamboo and ultimately above
ground C (Fan et al., 2013; Ji et al., 2013). Additionally, bamboo species 
vary in their growth and decomposition rates, which can impact the 
accumulation of C in both aboveground biomass and soil (Zhang et al., 
2011). On the other hand, local management practices, such as har
vesting and land use, can also significantly affect C dynamics within 
bamboo ecosystems (Gaikwad et al., 2019). Therefore, bamboo can play 
a crucial role in climate change mitigation because of its significant C 
storage potential (Yiping et al., 2010).

4.3. Influence of elevation on carbon stock

Elevation is an important factor influencing environmental condi
tions such as temperature, precipitation patterns, and soil characteris
tics, all of which can significantly impact bamboo growth and 
distribution (Ayer et al., 2023a; Fang et al., 2018; Ghale et al., 2020; 
Huang et al., 2014). For instance, the abundance and distribution of 
bamboo species is strongly tied to the amount and distribution of rainfall 
which generally increases with increasing elevation (Ayer et al., 2023a; 

Fig. 3. Bar plot showing C stock across various C pools (Mean ± St. Error). AGC, BGC, SOC and TC stands for Aboveground C, Belowground C, Soil Organic C, Total C 
respectively.
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Hu et al., 2021). The locations receiving well-distributed and higher 
rainfall support a greater diversity and growth of bamboo species (Baj
racharya, 2008). Similarly, cooler temperatures at higher elevation can 
slow down decomposition processes, leading to the accumulation of 
biomass over time (Huang et al., 2014). This slower decomposition rate 
at higher elevations may result in a build-up of organic matter, 
contributing to increased SOC stock. Several studies have reported a 
decrease in aboveground C (Fan et al., 2013; Ghale et al., 2020; Masisi 
et al., 2022) and increase in SOC stock with increasing elevation (Chang 
et al., 2016; Ghale et al., 2020; Huang et al., 2014) which was explained 
by lower temperature and higher precipitation in higher elevation. 
However, our study observed higher C stocks across all C pools in 
bamboo stands at middle elevations (Fig. 4) which contrast with 
established findings from previous studies from outside forest areas in 
Nepal (Ghale et al., 2020) and bamboo forest in China (Fang et al. 2013; 
Fang et al., 2018; Tang et al., 2017) and Africa (Masisi et al., 2022). This 
difference could be explained by difference in location of our study plots 
which is outside the forest area. Although lower temperatures and 
higher precipitation in higher elevations generally favor aboveground 
biomass growth, areas outside of forests at increasing elevations present 
challenging conditions for bamboo due to rocky and shallow soils with 
poor nutrient availability (McIntire et al., 2016). Forest soils are often 
rich in organic matter from decaying leaves and other plant material 
(Osman and Osman, 2013). However, outside forest areas, especially at 
higher elevations, soils may lack this organic input, further reducing 

nutrient availability (Saeed et al., 2019). In addition, increasing pre
cipitation may lead to soil erosion and nutrient leaching due to the 
absence of canopy cover outside the forest area, especially where 
bamboo clumps are distributed scatteredly (McDonald et al., 2002). In 
this context, middle elevations outside the forest might represent a 
transitional zone in terms of environmental conditions. They may offer a 
more moderate and stable microclimate compared to higher elevations, 
where conditions can be cooler and more extreme, and lower elevations, 
which may experience higher temperatures and more arid conditions 
(Pan et al., 2023). These moderate conditions at middle elevations could 
provide an optimal environment for bamboo biomass growth and SOC 
accumulation. Another possible reason could be difference in species in 
previous studies such as Ghale et al. (2020) (Bambusa Nepalensis, 
Himalayacalamus Fimbriatus, Melocanna baccifera), Masisi et al. (2022)
(Oxytenanthera abyssinica, Bambusa vulgaris) and Fan et al. (2013)
(Phyllostachys edulis), Tang et al. (2017) (P. edulis), Fan et al. (2018) 
(P. edulis). Masisi et al. (2022) in Africa found aboveground C variation 
across elevation gradients as species-dependent, with O. abyssinica 
storing higher amounts of aboveground C compared to B. vulgaris, even 
though both were lowland bamboo species. While research on the 
relationship between bamboo biomass C stock and elevation is limited, 
Masisi et al. (2022) suggested that variation often correlates with indi
vidual species’ adaptability to the environment of locality. Therefore, 
our study highlights the significance of mid-level elevations as pivotal 
areas for C stock for bamboo. Considering the role of elevation in 

Fig. 4. Distribution of C stock across elevation categories. Different lowercase letters indicate significant differences (p < 0.05) between elevation categories and red 
dot represents mean value. AGC, BGC, SOC and TC stands for Aboveground C, Belowground C, Soil Organic C, Total C respectively.
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bamboo’s biomass production and C stock outside forest area, 
middle-elevation regions hold significant potential for bamboo planta
tions, particularly on marginal lands outside forests.

4.4. Influence of aspect on carbon stock

Our study reported slightly higher aboveground and belowground C 
stock in West aspect than East aspect (Fig. 5) which contradicts with Niu 
et al. (2020). Niu et al. (2020) reported higher aboveground C stock in 
East aspect than West aspect in Moso bamboo plantation forest in China 
which was explained by higher incidence of solar radiation compared to 
the other aspects. Another study by Deng et al. (2016) in China also 
revealed better bamboo growth in sunny slopes compared to the shady 
slopes. This difference could be due to difference in studied species as 
well as environmental conditions between inside and outside the forest 
area. B. nutans, the species studied in our research, may have different 
physiological responses to sunlight and temperature variations 
compared to Moso bamboo as different species have different growth 
characteristics, environmental requirements, and responses to external 
factors that can impact carbon sequestration (Sharma et al., 2024). 
Additionally, outside forest area, B. nutans stands may benefit from 
reduced competition and increased sunlight exposure due to minimal 
canopy cover from surrounding trees. This can positively affect their 
growth rates and carbon sequestration capacity since the spatial 
arrangement of vegetation including vegetation density and spacing in a 
forest or non-forest area—strongly influences resource allocation and 

ultimately, their biomass growth (Forrester, 2019). However, no sig
nificant difference in aboveground and belowground C stocks was found 
between East and West aspects, which may be due to the lack of inten
sive bamboo management practices in study area. The absence of 
management interventions such as irrigation, fertilization, selective 
thinning, etc. could have minimized the potential effects of 
aspect-caused microclimatic variations, such as differences in soil 
moisture, air and soil temperature, and precipitation, on C stocks (Lv 
et al., 2020). For example, farmers harvest bamboo shoots and bamboo 
culms once they mature but do not employ any additional silvicultural 
management techniques (Ayer et al., 2023a), because farmers in Nepal 
believe that bamboo requires minimal care and management practices 
(Ghimire, 2008). This general lack of intensive bamboo management 
might have dampened the expected differences in carbon sequestration 
between East and West. On the other hand, our study revealed that SOC 
was significantly higher (Fig. 5) in East than West aspect which is 
consistent with Niu et al. (2020). This might be because the East aspect is 
called the half-sunny slope which receives a higher incidence of solar 
radiation leading to higher rates of plant decomposition, and soil 
organic matter accumulation compared to the West aspect (Qian et al., 
2019). Prior studies also suggest that aspects with lower solar radiation 
exhibit lower C and nutrient dynamics in soil (Kato et al., 2006; Zhang 
et al., 2011; Bangroo et al., 2017). Furthermore, due to the scattered 
clumped distribution of B. nutans outside the forest, we can find reduced 
canopy cover which increases probability of receiving higher solar ra
diation, resulting in higher SOC stock accumulation.

Fig. 5. Distribution of C stock across aspect categories. Different lowercase letters indicate significant differences (p < 0.05) between aspect categories and red dot 
represent mean values. AGC, BGC, SOC and TC stands for Aboveground C, Belowground C, Soil Organic C, Total C respectively.
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4.5. Interaction effect of elevation and aspect on carbon stock

The influence of elevation on C storage remains relatively consistent 
across different aspects (East and West) (Fig. 6 and Table 2) suggesting 
that elevation-related patterns are robust and not highly dependent on 
aspect. This consistency indicates that elevation serves as a dominant 
driver of C dynamics within these bamboo ecosystems (Fang et al., 
2018). While aspect significantly impacts SOC, it does not exhibit a 
similar influence on aboveground C, belowground C, and total C (Fig. 6
and Table 2). This highlights the specific role of aspect in shaping SOC 
stock. It implies that factors related to slope orientation, such as solar 
radiation exposure, may have a more pronounced effect on SOC accu
mulation and decomposition processes (Zhang et al., 2011). However, 
this study revealed that interaction between elevation and aspect does 
not have a significant interaction effect on any of the C pools (Fig. 6). For 
land managers and conservationists, considering the impact of elevation 
and aspect when modeling the SOC stock is valuable (Fang et al., 2018). 
These findings further encourage research to explore the mechanisms 
driving elevation-related patterns in C dynamics and the unique role of 
aspect in influencing SOC stock. Understanding these factors in more 
detail can enhance our ability to manage and conserve 
bamboo-dominated ecosystems effectively (Yuen et al., 2017).

5. Conclusion

This study affirms the potential of bamboo stands (B. nutans) outside 

the forest in C storage (148.73 Mg ha⁻1), emphasizing their significance 
in climate change mitigation. Additionally, they demonstrated note
worthy C storage in aboveground biomass (106.17 Mg ha-1), below
ground biomass (27.60 Mg ha-1), and soil (14.96 Mg ha⁻1) respectively. 
Middle elevations outside forest area demonstrated significantly higher 
C stocks (161.77 Mg ha − 1) than other elevation ranges due to moderate 
and stable microclimates. Additionally, areas with an East slope (18.52 
Mg ha⁻1) exhibit notably higher SOC compared to the West aspect (11.4 
Mg ha⁻1). By recognizing the significance of elevation and aspect outside 
forest area in carbon dynamics, policymakers and land managers can 
make more informed decisions to enhance C sequestration and 
contribute to broader climate change mitigation efforts. In-depth ex
plorations into the complex interplay of elevation, aspect, and other 
environmental factors outside forest area, including leaf litter C, are 
necessary to better understand the nuanced relationships affecting C 
dynamics in bamboo ecosystems. Given the focus on B. nutans in this 
study, future research should explore the carbon capacity of other 
bamboo species outside forest area as well. This study also call for 
incorporating bamboo C into Nepal’s REDD+ initiative which can be 
crucial for optimizing opportunities to earn C credits. (Eq. (1)-(5)).
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Table 2 
Two-way ANOVA on the combined effect of elevation and aspect on carbon stock 
of different carbon pool.

Carbon 
pools

Source of 
Variation

Df Sum Sq Mean Sq F 
value

Pr(>F)

AGC (Mg 
ha-1)

Elevation 2 2349 1174.70 7.84 0.002**

Aspect 1 28 27.80 0.19 0.670
Elevation x 
Aspect

2 419 209.60 1.40 0.266

Residuals 24 3595 149.80
BGC (Mg 

ha-1)
Elevation 2 158.89 79.44 7.84 0.002**

Aspect 1 1.89 1.89 0.19 0.670
Elevation x 
Aspect

2 28.34 14.17 1.40 0.266

Residuals 24 243.15 10.13
SOC (Mg 

ha-1)
Elevation 2 266.4 133.20 10.34 0.001***

Aspect 1 380.4 380.40 29.54 0.000***
Elevation x 
Aspect

2 2.5 1.20 0.10 0.910

Residuals 24 309.1 12.90
TC (Mg ha- 

1)
Elevation 2 3843 1921.70 8.33 0.002**

Aspect 1 165 165.40 0.72 0.406
Elevation x 
Aspect

2 669 334.50 1.45 0.255

Residuals 24 5539 230.80

*** and.
** represents significance level at 0.001 and 0.05 respectively.
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