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Abstract 9 

Human-induced changes in the natural environment are affecting the provision of ecosystem goods 10 

and services (EGS). Land use plans rarely include the value of public ecosystem goods such as climate 11 

regulation and biodiversity due to difficulties in valuing these services. In this study, we assessed total 12 

economic value for five important ecosystem goods and services under five future land-use scenarios 13 

using varying levels of costs, prices and discount rates. Results indicated that at higher discount rates 14 

normally applied to commercial activities, and assuming the current prices for goods and services, Net 15 

Present Value (NPV) was highest for landscape management scenarios aimed at maximising agricultural 16 

production. Potential income from services such as carbon and biodiversity does not offset projected 17 

income lost from agriculture due to land-use changes. At higher discount rates, NPV was negative for the 18 

two scenarios aimed at enhancing the longer term ecological sustainability of the landscape. These results 19 

indicate that income from carbon sequestration and biodiversity conservation would need to be 20 

considerably higher than current levels in order to justify focusing management of this landscape on 21 

ecological outcomes. At lower discount rates (at levels normally associated with public investments), the 22 

more ecologically appropriate ‘mosaic farming system’ had the highest NPV, indicating that this type of 23 

system might be attractive for investors interested in longer term return horizons or wider public benefits. 24 

Higher income from carbon or biodiversity, or increased return from timber by using higher value tree 25 

species, could potentially make more ecologically appropriate systems profitable at higher discount rates.  26 

Keywords: ecosystem goods and services, economic evaluation, land management, land-use scenarios, 27 

decision making   28 
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1. Introduction  29 

Human life depends on a wide variety of ecosystem goods and services (EGS) provided by healthy 30 

ecosystems. As described in the Millennium Ecosystem Assessment (MEA), these include the 31 

provisioning of resources such as food, fibre, and raw materials; regulating services such as water 32 

filtration, storm buffering, and climate stabilisation; supporting services such as soil formation, 33 

photosynthesis, and pollination; and cultural services that are spiritual, aesthetic, and recreational services 34 

(MEA, 2005). Many human activities impede ecosystem functions, thereby reducing or increasing flows 35 

of these EGS. While the supply of some goods is increasing, the MEA estimates 60% of the ecosystem 36 

services have declined globally in the past 50 years (MEA, 2005). However, the critical ways in which 37 

ecosystems support and enable human well-being are rarely captured in cost-benefit analysis for policy 38 

formulation and land use decision-making (Daily et al., 2009; Laurans et al., 2013; Nelson et al., 2008). 39 

Recent studies highlight the need to assess trade-offs among EGS under a variety of future land-use 40 

scenarios (Butler et al., 2013; Carpenter et al., 2009; Sanon et al., 2012; Willemen et al., 2012). 41 

Prioritising landscapes for the production or harvest of a single ecosystem commodity, such as food 42 

or fibre, can diminish other services such as water quality, erosion prevention or soil formation (Bennett 43 

et al., 2010; Bryan and Crossman, 2008; Raudsepp-Hearne et al., 2010; Stoate et al., 2009; Zamit, 2013), 44 

as well as undermining overall ecosystem resilience (MEA, 2005). This is certainly the case for south-45 

eastern Australia where such trade-offs have been observed over the past two hundred years (Bryan et al., 46 

2010, 2011; Crossman et al., 2009, 2010; Sandhu et al., 2012). Several authors explore the spatial patterns 47 

of provision of multiple EGS in production landscapes, focusing on the win-win opportunities for 48 

conservation and production of multiple EGS (Bennett et al., 2009; Egoh et al., 2008; Naidoo et al., 2008; 49 

Nelson et al., 2009; Tallis and Polasky, 2009; Zamit, 2013). However only a few deal with the economic 50 

valuation of future landscape management scenarios and associated impact on provision of EGS. 51 

Changes in land use and land cover are ongoing due to changes in environmental conditions, patterns 52 

of human settlement, modes of production, and demands of society (Lanbin et al., 2001; Verburg et al., 53 
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2009). Large areas of native vegetation in Australia have been converted to agricultural production (SOE, 54 

2011) resulting in unforeseen economic impacts such as the costs associated with reduced flood control, 55 

the provision of potable water, or increased salinity and soil erosion (i.e., ecosystem services) (SOE, 56 

2011) that are not captured in standard analysis of farming systems. EGS research is relatively new and 57 

quantification and valuation of services remain highly uncertain (Hou et al., 2013; Johnson et al., 2012). 58 

There are additional uncertainties with the future provision of services due to continuing land-use change 59 

and climate change. Therefore, a gross estimate of EGS at a point in time without considering future land-60 

use scenarios will have limited value for decision makers (Fürst et al., 2013; Swetnam et al., 2011). 61 

Identifying such potential changes in land cover, and measuring and managing multiple EGS under 62 

future land-use scenarios is a key challenge for policy makers. In the state of Victoria, Australia, efforts 63 

are underway to address these challenges. One such initiative is the Future Farming Landscapes (FFL) 64 

program, a long-term (~ 30 years) program that aims to reconfigure landscapes to their most sustainable 65 

use. Here, we attempt to identify and assess provision of various EGS under a range of plausible 66 

landscape configurations, including one FFL-type scenario in this landscape.  67 

Our specific aims were to (i) identify and define plausible land-use scenarios for the study area, (ii) 68 

estimate the value of key EGS: carbon sequestration, agricultural production, water, biodiversity and 69 

timber production under these land-use scenarios, (iii) show how these key EGS can be included in 70 

economic evaluations in order to better support decision making, and (iv) analyse the potential trade-offs 71 

and synergies among multiple EGS under these land-use scenarios.  72 

 73 

2. Methods 74 

2.1 Study area and policy context 75 

The study area is located in north-central Victoria (Fig. 1), a region spanning over three million 76 

hectares and encompassing three bioregions (Murray Fans, Victorian Riverina, Murray Mallee; DSE, 77 

2004). It encompasses approximately 13% of Victoria and is a significant component of the Murray-78 
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Darling Basin. These bioregions support over 2,000 native plant species, including 130 state-wide 79 

threatened species with 52 of these considered to be nationally threatened (NCCMA, 2011). They also 80 

support more than 400 native vertebrate fauna species including 101 threatened species of which 13 are 81 

nationally threatened (NCCMA, 2011). Furthermore the region supports the States most depleted wetland 82 

types, high diversity of waterbird species including the waterbirds listed under international agreements 83 

(DSE, 2010). The region is particularly important for agriculture producing vast wealth from its irrigated 84 

industries in the north and dryland industries in the south. The area has been heavily modified since 85 

European settlement, and approximately 70% native vegetation cleared which is higher than state average 86 

(65%). Conversion of deep rooted perennial vegetation to annual crops has resulted in a suite of 87 

environmental impacts including dryland salinity, habitat and biodiversity loss, and soil degradation 88 

(Jones et al., 2007; Pittock et al., 2012). Moreover, this region is situated within the Murray-Darling 89 

Basin – the largest river catchment area in Australia, and clearing for crops and over-use of irrigation in 90 

this catchment has resulted in extensive environmental impacts (CSIRO, 2012). In recent years, the 91 

Australian and state governments, business and landowners have employed a number of strategies, 92 

including market-based instruments for conservation, aimed at reversing this decline in environmental 93 

condition (Burgin, 2008; Eigenraam et al., 2006; Wheeler et al., 2013).  94 

Climate change is one of the most important challenges in Australia and the study region is no 95 

exception. During the last decade (1998 to 2007) average annual temperatures in the region were 0.3˚C 96 

warmer than the 30 year (1961 to 1990) average while there has been a substantial decline in the region’s 97 

rainfall over the past decade (DSE, 2008). The direct and indirect impacts associated to climate change 98 

will have major adverse effects on the environment, society and economy. The Australian Federal 99 

government has introduced various initiatives (e.g., Carbon Farming Initiative, Biodiversity Fund) to 100 

reduce greenhouse gas emissions, prepare for a changing climate and to build greater environmental 101 

resilience across the Australian landscape (CEF, 2011; DCCEE, 2011a). The Australian emissions trading 102 

scheme (ETS) legislation (i.e., The Clean Energy Act (2011)) passed by the Parliament in 2011,includes 103 
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carbon pricing mechanism, investing in renewable energy, improving energy effacing and creating 104 

opportunities in the land sector. However, proposed new legislation to repeal The Clean Energy Act 105 

(2011) and direct action to act climate change may reduce some opportunities for the land sector.  106 

2.2. Study site ‒ Reedy Lakes and Winlaton  107 

The study site lies between Kerang and Lake Boga in north-central Victoria, Australia, 108 

approximately 320 km north-west of Melbourne (35.972º S, 143.228º E, Fig. 1). The total area is 109 

approximately 30,000 ha, bounded by the Little Murray and Lower Loddon Rivers in the North, West and 110 

South and the Murray Valley Highway to the West. Within the study area lie the Reedy Lakes and 111 

Winlaton Future Farming Landscapes (FFL) projects managed by Kilter Pty Ltd (an asset management 112 

group servicing the superannuation sector). The terrain is generally flat and low-lying (70‒80 m above sea 113 

level). Average annual rainfall is approximately 370 mm (mean, 1962–2012), and mean annual 114 

temperature ranges from a minimum of 9 ºC to a maximum of 23 ºC.  115 

# Fig 1 approximately here# 116 

Reedy Lakes and Winlaton is a typical north-central Victorian landscape that has been subject to 117 

extensive vegetation clearing for agriculture and pastoral production and native vegetation is now highly 118 

fragmented and often degraded (NCCMA, 2005). Since European settlement in the mid-1800s, an 119 

estimated 70% of native vegetation (18,300 ha) has been cleared. This has resulted in widespread declines 120 

in biodiversity, increased soil and stream salinity and soil erosion (NCCMA, 2011). Nationally, natural 121 

resource management programs have focused on reduction in salinity, improving water quality and 122 

environmental flows, and protecting biodiversity (Hajkowicz, 2009). Major land use-land cover types 123 

include irrigated farming, dryland cropping, native vegetation, degraded land undergoing rehabilitation, 124 

and water bodies (Table 1).  125 

The study area covers less than 0.2 % of Victoria’s land mass. However, it supports a relatively large 126 

number of threatened flora species (50 species, 2.5% of threatened plants in Victoria) and fauna species 127 
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(81 species, 45% of the threatened Victoria). The high levels of biodiversity, and the pressures on this 128 

biodiversity, have resulted in the area being identified as an important site for conservation by the 129 

Victorian Government (Wetlands Scientific Committee, 1993). Wetlands within the study area support 130 

high richness and abundance of waterfowl species (Lugg et al., 1989) and some sites are of international 131 

significance, including the ‘Kerang Wetlands Ramsar Site’ (DSE, 2004).  132 

Land and water use in the study area are in a constant state of flux. Irrigation water entitlements 133 

are being bought and sold, there are ongoing changes in where and how farming takes place, and people 134 

are moving from rural properties to regional town centres (NCCMA, 2007). More recently, Kilter Pty Ltd 135 

targeted land in north-central Victoria for management under the Future Farming Landscapes (FFL), a 136 

long-term program that aims to restore landscapes to their most sustainable configurations. Through this 137 

program 25% (7552 ha) of the Reedy Lakes and Winlaton study area is currently being reconfigured and 138 

managed for both traditional and new income streams including agriculture, forestry, green energy, and 139 

water. This potential for future land-use change presented an ideal opportunity to assess the current status 140 

of biodiversity and associated ecosystem services provided by each land use-land cover type as a baseline 141 

for assessing the implications of future land management options. 142 

# Table 1 approximately here# 143 

2.3 Plausible future scenarios for landscape configuration and associated land use-land cover 144 

We developed five plausible future land-use scenarios for the study area (Table 2). This was based 145 

on a review of recent land use-land cover change patterns in south-eastern Australia and undertaken in 146 

consultation with stakeholders.  147 

# Table 2 approximately here# 148 

2.3.1 Scenario 1: Business-as-usual (BAU) 149 

This scenario assumed continuation of current farming and management systems with no further 150 

broad-scale clearing of remnant native vegetation. Gradual loss of remnant vegetation and opportunistic 151 
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agricultural expansion will potentially occur at the farm scale but this was not included in the scenario. 152 

The BAU scenario was considered plausible as the current prices of agricultural commodities, while 153 

variable, are likely to be maintained or increased (Ransom, 2011). To this end, farms were likely to 154 

continue operating for the foreseeable future. Under this scenario we assumed approximately 0.14% loss 155 

of native vegetation per annum which is similar to current native vegetation clearance rate in Victoria 156 

(DSE, 2012).  157 

2.3.2 Scenario 2: Mosaic farming systems (MFS) 158 

This scenario assumed that the landscape will be transformed to more ecologically sustainable uses 159 

involving changes to farming practices, low rainfall forestry and environmental plantings. This scenario is 160 

based on the FFL model and uses a similar land-use reconfiguration, with the goal of developing an estate 161 

that includes environmental plantings and extensive grazing (~51%), irrigated farming (horticulture, 162 

agriculture ~33%), perennial horticulture (~7%), commercial agroforestry (~4%) and other land uses 163 

(~5%) (Kilter Pty Ltd, 2011). The MFS scenario is considered plausible given that Kilter’s initiatives 164 

were already underway on approximately 25% of the study area (Table 3). Under this scenario we 165 

assumed that approximately 50% of dryland farming was primarily converted to environmental planting 166 

(60% of converted land) due to the potential demand for carbon credits, and production forestry (30% of 167 

converted land). A small proportion (10%) of irrigated farming was assumed to be converted to perennial 168 

horticulture.  169 

# Table 3 approximately here# 170 

2.3.3 Scenario 3: Eco-centric or environmental plantings (ECO)  171 

This scenario assumed that there will be substantial increase in environmental plantings due to 172 

growing environmental concerns and growth of new commodities based on environmental values such as 173 

carbon and biodiversity credits (Bekessy and Wintle, 2008; Burgin, 2008). The Australian Government 174 

and Victorian State Governments have designed economic instruments that provide financial incentives to 175 
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landowners for undertaking eligible carbon sequestration activity such as revegetation of fragmented 176 

landscape via various mechanisms such as Carbon Farming Initiative (DCCEE, 2011a) and the Land and 177 

Biodiversity Fund (Caripis et al., 2012; Keenan et al., 2012). Under this scenario it was assumed that all 178 

dryland faming would be converted to mixed species environmental planting (70%) due to potentially 179 

higher demands for carbon credits, and to a lesser extent commercial tree farming (30%) due to low 180 

profitability.  181 

2.3.4 Scenario 4: Agro-centric or production oriented (AGRO) 182 

This scenario assumed that higher demand for food and livestock production due to continued 183 

population growth in Australia and globally (Godfray et al., 2010). Global food demand is expected to 184 

more than double by 2050 to meet this growing demand (Green et al., 2005). Relatively cheaper land 185 

prices, and improved farming and irrigation practices may reduce the production cost and make 186 

agricultural production a more profitable venture. The scenario assumed the current areas of agricultural 187 

production would increase through clearance of remnant native vegetation and conversion to agricultural 188 

production. Under this scenario it was assumed that all available native vegetation on private land (4,502 189 

ha) would be cleared for dryland farming (70% of converted land) and irrigated cropping (30% of 190 

converted land).  191 

2.3.5 Scenario 5: Abandoned land use (ALU) 192 

This scenario assumed that higher labour prices and a strong currency may prevent Australian 193 

products competing effectively in international markets and reduced water availability due to water 194 

trading and climate change, resulting in a decline in agricultural terms of trade, and agricultural land 195 

abandonment (Beilin et al., 2014; Garnaut, 2008; Hamblin, 2009; Race et al., 2010). Under this scenario, 196 

all irrigated and dryland farming areas would be abandoned and either revert to native vegetation or 197 

become weed infested or a combination of both.  198 

2.4 Scenarios and assumptions for costs and associated revenues 199 
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Cost of production and associated returns from each EGS were estimated under three commonly used 200 

scenarios: (i) base or central cost and revenue assumptions, (ii) optimistic or higher revenue but low 201 

production cost, and (iii) conservative or high production cost and lower revenue. Table 4 provides a 202 

summary of the various assumptions for each cost-based scenario. 203 

2.4.1 Base or central scenario 204 

This scenario used the actual establishment and management cost provided by Kilter Pty Ltd and a 205 

carbon price of $20 Mg
-1

 CO2
e
. This price was based on the current price under the Australian 206 

Government’s Carbon Pricing Mechanism (Clean Energy Future, 2012) less the estimated cost for 207 

assessment and verification, which was assumed to be approximately 15% of total value. Similarly it 208 

assumed moderate stumpage value of timber and average gross revenue from agricultural production. 209 

2.4.2 Optimistic scenario 210 

This scenario used reduced establishment and annual management costs (to 50%) and a higher 211 

carbon price $30 Mg
-1

 CO2
e
. Similarly it assumed higher stumpage value of timber and higher gross 212 

revenue from agricultural production. 213 

2.4.3 Conservative scenario 214 

This scenario used a higher planting and annual management cost but a lower carbon price of $10 215 

Mg
-1

 CO2
e
. This was an average price in the voluntary carbon market used in a number of analyses 216 

(Crossman et al., 2011; Polglase et al., 2011). The price of agricultural commodities and livestock would 217 

be reduced due to globalisation and increased production capacity through technological advancements. 218 

Similarly, this conservative scenario assumed there would be a lower stumpage price of timber and lower 219 

gross revenue from agricultural production.  220 

2.5 Ecosystem goods and services  221 

We assessed and valued five important EGS provided by production landscapes in the study area and 222 

the region using a mixed approach of quantitative assessment and economic valuation (Bryan et al., 2010; 223 
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Butler et al., 2013; Crossman et al., 2009) for the various future land-use scenarios (Table 2). There are 224 

other valuable services generated in the Reedy Lakes and Winlaton region such as, salinity mitigation, 225 

water regulation, nutrient regulation, and recreation, but these were not considered in the analysis.  226 

EGS values for carbon, timber, water, agricultural production and additional values from biodiversity 227 

were estimated as net present value (NPV at base year 2012) per hectare over a time horizon of 30 years (t 228 

= 30) at three commonly used discount rates (r) of social (1.0%), public (5.0%), and commercial (10.0%) 229 

consistent with studies elsewhere (e.g. Paul et al., 2013; Polglase et al., 2011). These estimated values 230 

were compared with the estimated annual values of agricultural production per hectare available from 231 

Kilter Pty Ltd.  232 

2.5.1 Carbon sequestration  233 

Carbon sequestration in environmental plantings was estimated as Mg ha
-1

 using the Carbon Farming 234 

Initiative (CFI) reforestation tool (DCCEE, 2011c). Monetary values were obtained firstly by 235 

transforming Mg of C (carbon) ha
-1

 into Mg of CO2 ha
-1

 and secondly by multiplying the resulting Mg by 236 

the assumed carbon price. Similar to Crossman et al. (2010), NPV (ha
-1

) from carbon is estimated by the 237 

following formula:       
             

       
 

 

   
  238 

Where P is the price of carbon, Qt is the quantity of CO2
e
 sequestrated in year t, ECc is the 239 

establishment cost, MC is the annual management cost, and r is the discount rate. 240 

Different carbon prices were used for base, optimistic and conservative scenarios (Table 4). For the 241 

base scenario we used the 2012 carbon price of $23 Mg
-1

 of CO2 which was introduced by the Australian 242 

Government on 1 July 2012. 243 

2.5.2 Provision of water  244 

Woody vegetation usually uses a large proportion of rainfall compared to other land uses such as 245 

agriculture and pasture and can reduce the supply of this resource in streams and rivers (Zhang et al., 246 
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1999, 2001). Water yield from different forms of land cover was assessed based on the potential 247 

groundwater recharge (in mm yr
-1

) under given rainfall conditions (Benyon et al., 2007, 2009). Run-off is 248 

typically estimated as the balance of water available after rain-based deep drainage and 249 

evapotranspiration are subtracted from precipitation (Barratt et al., 2007), that is: R = P – E – D. Here, R 250 

is run-off, P is precipitation, E is total evapotranspiration, and D is deep drainage/recharge. However, the 251 

net change in catchment water storage over a long period of time is zero (Bradford et al., 2001) and hence 252 

there is negligible change in deep drainage. To this end we used a simple water balance equation 253 

following Chan et al. (2006): R = P – E. 254 

The amount of run-off reduction from revegetation was multiplied by the cost of water per ML ha
-1 255 

to identify the plantation water use cost for environmental planting and timber production. In the case of 256 

irrigation, the irrigation requirement for water ML ha
-1

 was multiplied by the prevailing water cost in $ 257 

ML
-1

.  258 

2.5.3 Biodiversity  259 

Biodiversity can be valued by society for its intrinsic worth or for its contribution to the provision of 260 

various EGS in the study area. Both natural and modified ecosystems support certain levels of 261 

biodiversity and a number of recent studies have focused on measuring and valuing biodiversity 262 

(Atkinson et al., 2012; Butler et al., 2013; Christie et al., 2006; Gracia et al., 2011; Salles, 2011). 263 

However, measuring and valuing biodiversity is a challenging issue for a number of reasons: (i) it is 264 

complicated by the wide spectrum of spatial scales at which biodiversity operates, ranging from the 265 

molecular, to gene, species, ecosystem and landscape levels; (ii) even for a given level of biodiversity, 266 

there is no well-established and agreed means for defining, measuring and valuing biodiversity; and (iii) a 267 

number of different indicators have been proposed which neither provide consistent nor comparable 268 

results on which to base general interpretations (Atkinson et al., 2012; Bene and Doyen, 2008; von 269 

Haaren et al., 2012).  270 
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Detailed assessment and valuation of biodiversity was not possible in this study. Rather we chose to 271 

use an approximate dollar value for biodiversity conservation resulting from market-based approaches 272 

used by the Australian and various State governments to conserve native vegetation on private land, such 273 

as ‘bush tender’ in Victoria (Stoneham et al., 2003), and ‘biodiversity banking’ in New South Wales 274 

(DECCW, 2009). This option was used because there were no comparable studies to transfer appropriate 275 

values for the study site. The assumption was that governments would be the primary purchasers of 276 

biodiversity conservation services from private landowners in the near future and the recent payments for 277 

establishment of mixed species environmental plantings that increase total habitat area and buffer existing 278 

remnant vegetation were used in the study (approximately $450 ha
-1

 over the first 5 years). 279 

2.5.4 Timber production 280 

Commercial timber and wood fibre production is an ecosystem good provided by native vegetation 281 

and managed plantations. In contrast to the declining trends for most EGS, timber production capacity is 282 

enhanced in many parts of the world (MEA, 2005) due to increasing establishment of managed 283 

plantations (FAO, 2010). Although the actual value of timber is realised at the time of maturity, we 284 

converted future value in terms of net present value using various discount rates. In this study we used the 285 

tree-stand growth model 3-PG (physiological principles predicting growth; Landsberg and Waring, 1997) 286 

available from Farm Forestry Toolbox (Private Forest Tasmania, 2011) to estimate timber production. 287 

The 3-PG model uses climatic data, site factors, initial tree density, and management practices such as 288 

thinning and fertilizer application. We simulated the annual growth of Oil Mallee (Eucalyptus kochii, a 289 

low rainfall species native to Western Australia and suitable for our study site) as a monoculture 290 

plantation. Estimated mean annual increment is then multiplied with the rotation age and various 291 

stumpage prices (S. Dawkins, Oil Mallee Australia pers. comm.) and discount rate to calculate the net 292 

present value from timber production. 293 

2.5.5 Agricultural production  294 
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Dryland cropping (barley, wheat, canola, oats), intensively irrigated cropping (legumes, corn, 295 

lucerne), annual horticulture (tomatoes, melons), and perennial horticulture (olives, almonds, stone fruits) 296 

are the dominant land use and primary economic activity in the study area (Kilter Pty Ltd, 2011). 297 

Agriculture is generally a profitable endeavour generating private returns to landowners. However, 298 

agricultural returns are highly variable, and subject to both unpredictable weather patterns and 299 

fluctuations in commodity markets (Ransom, 2011). The production value of agricultural land can be 300 

quantified by (i) spatially modelling agricultural profitability according to land and water use (Crossman 301 

et al., 2010), or (ii) obtaining estimated returns from secondary sources such as data from Australian 302 

Bureau of Statistics or landowners and stakeholders from the particular study area. Here we obtained 303 

present gross value of agricultural production $ha
-1

 yr
-1

 from Kilter Pty Ltd as this is more accurate rather 304 

than extracting other sources or profitability models. 305 

Agricultural production also contributes substantially to Australia’s total greenhouse gas emission 306 

profile (DCCEE, 2012) but these emissions were not considered in this analysis. However, the emissions 307 

from inputs into agricultural enterprises have to be deducted from agricultural profitability. Here we used 308 

total estimated greenhouse gas emission values available from Maraseni et al. (2007).  309 

2.6 Analysis  310 

We compared the value of production of EGS under the different land-use scenarios in Australian 311 

dollars per hectare (Table 2).  312 

# Table 4 approximately here# 313 

3. Results 314 

3.1 EGS trade-offs under different land-use scenarios 315 

Two plausible land-use scenarios (mosaic farming systems and eco-centric) realised substantial gains 316 

in carbon sequestration, biodiversity conservation and timber production. Conversion of dryland and 317 

irrigated farming landscape to perennial vegetation types store more carbon in soils and biomass, which 318 
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substantially increased carbon sequestration. However, the eco-centric scenario considerably reduced the 319 

value of agricultural production due to conversion of agricultural land to biodiversity plantings. Business-320 

as-usual and abandoned land-use scenarios produced mainly negative or neutral outcomes for the assessed 321 

EGS (Table 5).  322 

# Table 5 approximately here# 323 

3.2 Provision of EGS and profitability under different land-use scenarios  324 

Assuming base pricing and a ‘public’ discount rate (5%) and all values priced, mosaic farming 325 

systems produced the highest total NPV, followed by the business-as-usual, the agro-centric, the eco-326 

centric and the abandoned land-use scenarios (Table 5). For the business-as-usual and agro-centric 327 

scenarios there were no additional gains resulting from timber production, carbon sequestration or 328 

reduced emissions due to clearing of native vegetation. The eco-centric scenario resulted in negative NPV 329 

due to the low productivity of the study area for timber production.  330 

When using a commercial-level discount rate (10%), relative NPVs for the different scenarios 331 

changed considerably. The business-as-usual scenario produced the highest NPV followed by the agro-332 

centric, mosaic farming systems and eco-centric and abandoned land-use scenarios. At the higher 333 

discount rate, returns from carbon and timber were negative, which affected the total NPV of the two 334 

more ‘environmentally sustainable’ scenarios: the eco-centric and mosaic farming system scenarios. This 335 

situation was reversed with a lower ‘social’ discount rate (1%). Overall, the NPVs from each scenario 336 

were in the same order, with mosaic farming producing the highest NPV and land abandonment the least. 337 

However, the NPV for the eco-centric scenario almost doubled due to increased benefits from timber and 338 

carbon. The land abandonment scenario produced the least benefits under all scenarios.  339 

Returns from carbon sequestration produced positive NPV under the most optimistic and base level 340 

price assumptions. However, carbon farming resulted in negative benefits under the conservative scenario 341 

except at a very low discount rate of 1% (Fig. 2a). With additional payments similar to the BushTender 342 
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payment mechanism (approximately $450 ha
-1

 over the first 5 years), the NPV was positive, except when 343 

a high discount rate was used (Fig. 2b). However the economic benefits from this source are was 344 

considerably below those from agricultural production. Under the base pricing levels with a 5% discount 345 

rate and higher carbon price ($32 Mg
-1

 CO2
e
), the NPV from dryland farming is positive for carbon 346 

farming. To compete with the NPV from irrigated farming, the carbon price would need to be 347 

considerably higher i.e., $66 Mg
-1

 CO2
e
.  348 

# Fig 2 approximately here# 349 

Returns from planting trees for timber production resulted mainly in negative NPV under 350 

conservative and base return scenarios (Fig. 3). Positive NPV could only be realised with lower discount 351 

rates of 1 and 5% and optimistic price and cost assumptions.  352 

# Fig 3 approximately here# 353 

4. Discussion  354 

This study set out to identify and assess provision of EGS under a range of plausible future land-use 355 

scenarios to satisfy the changing demand of society for EGS. This study supports the concept of 356 

addressing conservation from the perspective of investment in EGS (Pagiola et al., 2010) such as 357 

payments for carbon sequestration (Crossman et al., 2011),  wetland and biodiversity banking (Carroll et 358 

al., 2008) or agri-environmental payments (Prager et al., 2012). However, those investing in these 359 

services will need to make considerable higher payments to produce a positive NPV at normal 360 

commercial discount rates, or accept lower returns. 361 

Results from this study indicated that the economic value from the provision of various EGS varied 362 

considerably under each land-use scenario. While the provision of many desired EGS can increase or 363 

decrease according to land use and management practices under each land-use scenario, NPV depends on 364 

the productivity per unit area, the market value of the commodity or service and discount rate. Under the 365 

base scenario of cost and revenue with a 5% discount rate, both the mosaic farming system model, and 366 

business-as-usual practices had a positive NPV. However, with a commercial discount rate of 10%, 367 
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landscape management regimes focused on agricultural production (the business-as-usual and agro-368 

centric scenarios) had the highest NPV, despite management not producing other goods, such as timber, 369 

or services such as carbon.  370 

Biodiversity value declined under both agriculturally-focused scenarios but levels of payment 371 

assumed in this study were not sufficient to offset the income benefits from farming. This supports the 372 

modelling from elsewhere that a focus on agricultural production can impact negatively on other services 373 

biodiversity, carbon and water (Crossman et al., 2009; Egoh et al., 2011; MEA, 2005; Prager et al., 2012). 374 

Although some studies suggest that the careful design of agricultural production can maintain or increase 375 

agricultural income, while also increasing value from other EGS (Batary et al., 2010; Pretty et al., 2006), 376 

in the case of biodiversity conservation there is ongoing debate about the relative merits of integrated 377 

versus partitioned conservation activity (Phalan et al., 2011; Tscharntke et al., 2012). Continuing 378 

profitability of agricultural production is also uncertain due to declining rural populations and labour 379 

availability, volatile commodity markets and climate variability (Steffen et al., 2009) and there are 380 

potential risk management benefits in maintaining options for multiple income sources. 381 

At a 5% discount rate, the eco-centric scenario produced a lower NPV under the base assumptions 382 

for costs and revenues. This indicates that planting trees for carbon or timber alone is not commercially 383 

attractive in the study area due to relatively low productivity in these low rainfall conditions. This poses 384 

significant challenges to the Australian Government’s Carbon Farming Initiative to increase carbon stocks 385 

in rural landscapes. Much of the land that might be used for this Initiative is in lower rainfall zones, with 386 

the land becoming available because water rights for irrigation associated with the land have been traded 387 

to other locations. Additional payments or incentives being implemented through the Biodiversity Fund 388 

or market-based instruments such as BushTender might makes some scenarios attractive but the 389 

combination of carbon and biodiversity payments did not come close to current expected returns from 390 

agricultural production at higher discount rates.  391 
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To compete with returns from dryland farming and irrigated farming, the eco-centric scenario 392 

requires either: (i) higher payments through well-designed economic instruments that provide incentives 393 

for landowners to sequester carbon and conserve biodiversity (our analysis indicated that the carbon price 394 

had to be substantially higher than current levels: $32 Mg
-1

 CO2
e
 and $66 Mg

-1
 CO2

e
respectively) or (ii) 395 

investors need to base their returns on longer terms benefits through applying a low discount rate. The 396 

latter situation might apply to non-profit organisations or government funded programs that aim to 397 

produce public services. 398 

 Separate payment mechanisms for both carbon and biodiversity credits could provide increased 399 

incentives for the revegetation of degraded landscapes resulting in positive environmental outcomes 400 

(Bekessy and Wintle, 2008; Crossman et al., 2011; Fox and Nino-Murcia, 2005). Because of the long 401 

time span between investment to establish plantations and income from timber, NPV from timber was 402 

also positive at the low discount rate. Similarly, at a carbon price of $25 Mg
-1

 CO2
e
, returns from carbon 403 

can be as profitable as dryland farming. However, even at a 1% discount rate, the carbon price had to be 404 

much higher, i.e., $54 Mg
-1

 CO2
e
 to produce similar returns to irrigated farming.   405 

The carbon price is currently dependent on the carbon pricing mechanism of an individual country, 406 

or is determined by the free market mechanism under the voluntary carbon scheme. Carbon pricing is 407 

well beyond the control of the land owner or land manager. However a progressive carbon tax (see Dissou 408 

and Siddiqui, 2014) and annual carbon price increment as per CPI can provide incentives to the 409 

landowner so that they can make an informed decision on land use by evaluating the NPV under different 410 

land use scenarios and potential carbon pricing. 411 

The abandoned land-use scenario was neither commercially attractive nor socially or 412 

environmentally desirable due to the decline of many EGS that are important for human survival and 413 

well-being. However, under certain conditions ‘abandoned’ land could produce better environmental 414 

outcomes, if it is managed in a light-handed way to support native vegetation and associated biodiversity 415 

(Beilin et al., 2014; Lasanta-Marinez et al., 2005; Luck, 2010). In other cases, abandoned land could be 416 
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purchased by environmental and conservation organisations such as Australian Wildlife Conservancy and 417 

Birds Australia and managed through conservation covenants (Luck, 2010). However, in many cases 418 

abandoned land becomes weed and pest infested resulting in ecosystem dis-services (Le Maitre et al., 419 

2014; Dunn, 2010; O’Farrell et al., 2007). In addition, such land may be prone to bushfires and may be 420 

difficult to monitor due to limited road access. Similarly, lack of pest management could increase 421 

invasive species such as the red fox and feral cat which would have devastating consequences for native 422 

fauna (Luck, 2010). 423 

Although planting trees produces many public EGS such as enhanced biodiversity (Brockerhoff et 424 

al., 2008; Munro et al., 2009), carbon sequestration (Bottcher and Linder, 2010; Paul et al., 2013), 425 

reduced dryland salinity (Crossman et al., 2010), soil protection (de Groot and van der Meer, 2010), and 426 

water regulation (Keenan and van Dijk, 2010), planting trees for timber or wood fibre alone in many 427 

locations in Australia is not profitable due to low rainfall and low productivity. Two possible alternatives 428 

can overcome this situation.  429 

1.  Planting high value timber such as Australian sandalwood (Santalum spicatum). This species is 430 

climatically suited to the study site and can potentially generate significantly higher NPV per ha than 431 

other tree species (Brand et al. 2003; Jones, 2002).  432 

2. Enhancing income from plantations through integrating multiple uses involving additional income 433 

such as grazing and carbon sequestration (Maraseni et al., 2012). A recent study by Maraseni et al. 434 

(2012) demonstrated an approximate 30% additional return potential from integrating grazing and 435 

carbon sequestration in timber production systems in medium rainfall study sites in south-east 436 

Queensland.  437 

While this study demonstrated that higher economic values can be potentially be achieved through 438 

adopting management systems that integrate multiple goods and services, under the current policy there 439 

are very few payments or incentive mechanisms for producing a range of EGS (House et al., 2008). For 440 

example, timber plantations sequester significant amounts of carbon during their growth and carbon can 441 
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be stored for long periods of time in a range of timber products but planting trees for timber production 442 

did not qualify for carbon credits under current Carbon Farming Initiative guidelines (DCCEE, 2011a). 443 

There has been some softening of this position recently and the Australian Government is considering a 444 

methodology that allows farmers to claim credits for farm forestry plantings 445 

(http://www.climatechange.gov.au/reducing-carbon/carbon-farming-446 

initiative/methodologies/methodology-proposals).  447 

Analysis revealed trade-offs and synergies in the production of goods and services under different 448 

land-use scenarios. For example, the eco-centric and mosaic farming systems scenarios involved deriving 449 

income from carbon and timber production at the cost of agricultural production. While there was synergy 450 

between carbon sequestration and biodiversity, trade-offs were observed between timber production and 451 

biodiversity. Similarly, in the business-as-usual and agro-centric scenarios, the focus on production of 452 

agricultural goods has an impact on the supply of carbon, timber production and biodiversity benefits. 453 

There was potential to reduce these trade-offs at landscape scale without compromising overall 454 

profitability (Onaindia et al. 2013) but , in many cases, these trade-offs are inevitable at the site or 455 

property scale (MEA, 2005; Rodríguez et al., 2006).  456 

These findings have important implications for forest management internationally. The ‘landscape 457 

approach’ has become an increasingly important part of the global forest and land management policy 458 

dialogue in recent years (Batáry et al., 2010; Otte et al., 2007; also CIFOR reference). Often this is 459 

portrayed in terms of win-win-win outcomes from production systems, conservation and the provision of 460 

ecosystem services. However, the trade-offs between the production of goods and services, or in 461 

providing different services is not considered. The approach in this paper, using different landscape 462 

management scenarios and their associated outcomes, provides a framework for considering and 463 

managing these trade-offs. Lessons from this study can be especially useful in areas where agriculture, 464 

forestry and other productive land uses compete with goals for conservation or the provision of ecosystem 465 

services.  466 
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5. Conclusion 467 

Land-use decisions are typically determined by a combination of government policies and the 468 

choices of private landowners (Nelson et al., 2008). Information about the effects of different choices on 469 

the provision of different types of EGS can provide the basis for more informed policy decisions (House 470 

et al., 2008), particularly for regions undergoing considerable change in management due to changing 471 

water use demographics and commodity prices. In this study, we assessed total economic value 472 

(expressed as Net Present Value, NPV, over a 30 year period) for two types of products (agricultural 473 

commodities and timber) and three ecosystem services (carbon, water and biodiversity) under five future 474 

land-use scenarios using varying levels of costs, prices and discount rates. Results indicated that at higher 475 

discount rates normally applied to commercial activities, and assuming the current prices for goods and 476 

services, NPV was highest for landscape management scenarios aimed at maximising agricultural 477 

production. Potential income from services such as carbon and biodiversity does not offset projected 478 

income from agriculture. At higher discount rates, NPV was negative for the two scenarios aimed at 479 

enhancing the longer term ecological sustainability of the landscape. These results indicate that income 480 

from carbon sequestration and biodiversity conservation would need to be considerably higher than 481 

current levels in order to justify focusing management of this landscape on ecological outcomes. At lower 482 

discount rates (at levels normally associated with public investments), the more ecologically appropriate 483 

‘mosaic farming system’ had the highest NPV, indicating that this type of system might be attractive for 484 

investors interested in longer term return horizons or wider public benefits. Higher income from carbon or 485 

biodiversity, or increased return from timber by using higher value tree species, could potentially make 486 

more ecologically appropriate systems profitable at higher discount rates.  487 

The abandoned land-use scenario produced negative NPV under all assumptions. Land abandonment 488 

potentially threatens native biodiversity and produces ecosystem dis-services due to potential growth of 489 

weeds and pest animals. This study showed that an EGS framework can be used to assess and value 490 
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different land-use options and demonstrated the potential to manage landscapes to produce a mix of EGS. 491 

This can provide a useful input for land use policy and land management decisions elsewhere. 492 
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Table 1 Distribution of current land use-land cover in the Reedy Lakes and Winlaton study area in north-775 

central Victoria, Australia (see also Fig.1).  776 

Current Land Use Area (ha) % of study area 

Native vegetation 6,799 22.6 

Dryland cropping 7,800 25.9 

Irrigated farming 8,516 28.3 

Horticulture 157 0.5 

Rehabilitated
a
 3,068 10.2 

Water 2,868 9.5 

Built up 914 3.0 

Total 30,122 100.0 
a
 Rehabilitated is degraded land undergoing rehabilitation and 777 

substantially modified (BRS, 2006). 778 
  779 
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Table 2 Estimated areas of different land use-land cover under future land-use scenarios.  780 

  Estimated area (ha) under each scenario
a
 

  Current BAU MFS ECO AGRO ALU 

Native vegetation 6,799 6,519 6,799 6,799 2,297 6,799 

Dryland cropping 7,800 8,079 3,900 0 10,951 0 

Irrigated farming 8,516 8,516 7,664 8,516 9,866 0 

Horticulture 157 157 1,009 157 157 0 

Freshwater lakes 2,573 2,573 2,573 2,573 2,573 2,573 

Saline lakes and treatment 1,530 1,530 1,530 1,530 1,530 1,530 

Channel/aqueduct 293 293 293 293 293 0 

Rehabilitation  1,541 1,541 1,541 1,541 1,541 1,541 

Built up 914 914 914 914 914 914 

Environmental plantings 0 0 2,730 5,460 0 0 

Forestry (production) 0 0 1,170 2,340 0 0 

Abandoned land 0 0 0 0 0 16,765 

Total 30,122 30,122 30,122 30,122 30,122 30,122 
a
 Descriptions of scenarios: ‘BAU’ business-as-usual, continuation of current farming and management 781 

system; ‘MFS’ mosaic farming systems, landscape reconfiguration to more ecologically sustainable uses 782 
that involve changes to farming practices and environmental plantings; ‘ECO’ eco-centric, substantial 783 
increase in environmental plantings due to increasing environmental market; ‘AGRO’ agro-centric, 784 
increase in agricultural land due to higher demand of food and livestock production in line with the 785 
population growth; ‘ALU’ abandoned land use, decline in agriculture and land abandonment due to 786 
reduced water availability and depopulation in rural areas. In many cases, ALU may ultimately become 787 
some form of native or exotic vegetation in the long run which may support biodiversity. This land type 788 
may also be subject to weed and pest infestations which negatively impact native biodiversity.  789 
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Table 3 Land currently undergoing change in management under the Future Farming Landscapes 790 

program being implemented by Kilter Pty Ltd (Kilter Pty Ltd, 2011).  791 

 792 

Land Management Unit Area (ha)
a
 

% of re-

configured land % of study area 

Irrigated Cropping 2,789 37 9.3 

Biodiversity 1,960 26 6.5 

Grazing 1,489 20 4.9 

Perennial Horticulture 658 9 2.2 

Forestry (production) 342 5 1.1 

Rural Living 292 4 1.0 

Other 23 0 0.1 

Re-configured land total  7,552 100 25.1 

Study area total  30,123   
a
 Data for re-configured land is current at December 2011, although this proportion will change over time.  793 
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Table 4 Scenarios and associated assumptions for cost and revenue estimation from environmental 794 

plantings, production forestry and agricultural production activities.  795 

Activities  

Assumption for cost and revenue estimates 

under each scenario
a
 

Base Optimistic Conservative 

Mixed species environmental planting  

Stocking (ha
-1

)  1,000 1,000 1,000 

Establishment cost ($ha
-1

) 1,000 800 1,200 

Annual management cost ($ha
-1

) 10 8 12 

Irrigation requirement (ML ha
-1

) negligible negligible negligible 

Carbon price ($Mg
-1

 CO2
e
) 20 30 10 

Production forestry  

Stocking (ha
-1

) 1,000 1,000 1,000 

Establishment cost ($ha
-1

) 2,000 1,600 2,400 

Annual management cost ($ha
-1

) 100 80 120 

Irrigation requirement (ML ha
-1

) first 5 

years after planting 2 2 2 

Stumpage value ($m
-3

) 50 60 40 

Agricultural production (Irrigated farming) 

Total revenue ($ha
-1

 yr
-1

) 1500 1700 1300 

Variable cost ($ha
-1

 yr
-1

) 1200 1300 1100 

Gross margin ($ha
-1

 yr
-1

) 300 400 200 

Irrigation requirement (ML ha
-1

 yr
-1

) 10 10 10 

Agricultural production (Dryland farming) 

Total revenue ($ha
-1

 yr
-1

) 120 140 100 

Variable cost ($ha
-1

 yr
-1

) 15 20 10 

Gross margin ($ha
-1

 yr
-1

) 105 120 90 

Other variables used for all analysis 

Water Price (ML
-1

) 20 20 20 

Price and cost inflation (% yr
-1

) 3 3 3 

Project period (years) 30 30 30 

Discount rate (%) 1, 5, 10 1, 5, 10 1, 5, 10 
a
 Descriptions of scenarios: ‘base’ current actual establishment and management cost and value; 796 

‘optimistic’ reduced management cost and increased value; ‘conservative’ higher management cost and 797 
lower value. 798 
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Table 5 Ecosystem goods and services trend under future land-use scenarios at base pricing and discount rate of 1, 5, and 10%.  

Future land-use 

scenarios
a
 

Estimated total value of ecosystem goods and services under each scenario (in thousands) 

Carbon  

Agricultural 

production Water
b
 Biodiversity Timber  Total 

Base pricing and 1% discount rate         

BAU $0 $133,901 $0 $16,148 $0 $150,048 

MFS $6,541 $139,810 -$901 $16,841 $1,021 $163,312 

ECO $13,082 $100,269 -$1,802 $16,841 $2,043 $130,433 

AGRO $0 $142,324 $0 $5,690 $0 $148,013 

ALU $0 $0 $0 $16,841 $0 $16,841 

Base pricing and 5% discount rate         

BAU $0 $71,351 $0 $9,746 $0 $81,097 

MFS
c
 $2,782 $74,198 -$1,061 $10,165 -$560 $85,524 

ECO $5,564 $52,940 -$2,122 $10,165 -$1,121 $65,426 

AGRO $0 $75,866 $0 $3,434 $0 $79,300 

ALU $0 $0 $0 $10,165 $0 $10,165 

Base pricing and 10% discount rate         

BAU $0 $40,029 $0 $5,893 $0 $45,922 

MFS
b
 -$975 $41,632 -$2,059 $6,146 -$2,099 $42,645 

ECO -$1,949 $29,705 -$4,118 $6,146 -$4,198 $25,586 

AGRO $0 $42,566 $0 $2,076 $0 $44,642 

ALU $0 $0 $0 $6,146 $0 $6,146 
a Descriptions of scenarios: ‘BAU’ business-as-usual, continuation of current farming and management system; ‘MFS’ mosaic farming 

systems, landscape reconfiguration to more ecologically sustainable uses that involve improved farming practices and environmental 

plantings; ‘ECO’ eco-centric, substantial increase in environmental plantings due to increasing environmental market; ‘AGRO’ agro-

centric, increase in agriculture land due to higher demand of food and livestock production in line with the population growth; ‘ALU’ 

abandoned land use, decline in agriculture and land abandonment due to reduced water availability and depopulation in rural areas. 
b ‘Water’ excludes water required for irrigation as this cost is already factored in agricultural or timber production. The negative value of 

water enhances the value of agriculture or timber production and is therefore treated as an ecosystem service  
c Under MFS, agricultural production will increase by 20% with improved farming practices and efficient allocation of water. 
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Fig. 1. Location of the Reedy Lakes / Winlaton study area and major land use-land cover types in north-

central Victoria, Australia. 

Fig. 2. (a) Estimated returns from carbon payments ($ha
-1

 yr
-1

), and (b) carbon payments with additional 

incentives from environmental payments (approximately $96 ha
-1

 yr
-1 

for 5 years) under conservative, 

base and optimistic scenarios and discount rates of 1, 5, 10%. See Table 4 for assumptions of costs and 

associated revenues. 

Fig. 3. Estimated returns from timber plantations ($ha
-1

 yr
-1

) under conservative, base and optimistic 

scenarios and discount rates of 1, 5, and 10%. See Table 4 for assumptions of costs and associated 

revenues. 

 


