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1 Introduction

This working paper describes the methods used to develop the online Climate change atlas for Africa 
of tree species prioritized for forest landscape restoration in Ethiopia (http://atlas.worldagroforestry.
org/). The atlas shows the baseline and 2050s habitat distributions across Africa for 127 tree species. 
The purpose of the atlas is to indicate how alterations in environmental conditions caused by climate 
change will likely affect the locations where particular tree species can grow in Africa. This is important 
for planning current and future tree-planting activities, including tree-planting-based forest landscape 
restoration actions. The atlas will help ensure that the right species are chosen for planting in particular 
locations, and is an important part of the process of operationalizing Climate Appropriate Portfolios of 
Tree Diversity (Kindt et al. 2023). The atlas is part of a larger set of tools developed by CIFOR-ICRAF for 
tree species selection for planting purposes that can be found on the Global Tree Knowledge Platform 
(https://www.worldagroforestry.org/tree-knowledge). Further background on the atlas and why it is 
important is provided in Box 1. 

Box 1. The online Climate change atlas for Africa of tree species prioritized for forest landscape 
restoration in Ethiopia.

The tree species that have been mapped in the online atlas are priorities identified through the Provision 
of Adequate Tree Seed Portfolio in Ethiopia (PATSPO) project (https://www.worldagroforestry.org/project/
provision-adequate-tree-seed-portfolio-ethiopia). This project, now in its second phase, is developing tree 
seed supply capacity in Ethiopia to help reach the country’s large forest landscape restoration target of 
15 million hectares. The PATSPO project is describing existing tree seed sources and is planting breeding 
seedling (or seed) orchards (BSOs) for tree improvement; these BSOs further act as high-quality adapted 
seed sources. Mapping where tree species can grow under future climate helps PATSPO to plan for 
sustainable, appropriate tree seed supply.

Although the PATSPO project focuses on Ethiopia, the online atlas covers species distributions for the 
whole of Africa. Principally, this is to anticipate situations where suitable habitat shifts across national 
boundaries. Such shifts will occur when novel future climatic conditions for Ethiopia are already experienced 
in other African countries under their baseline climate. Another reason to model at the continental scale 
is to increase the number, and to reduce the bias, in the occurrence observations used for the model 
calibrations (see also Luedeling et al. 2014; Meyer et al. 2016). Finally, by scaling out to the whole of Africa, 
the atlas can be used by researchers, restoration planners and tree planters in other African nations, for 
those tree species that are common priorities with Ethiopia.

The modelling of contemporary and likely future tree species distributions, as carried out for the online 
atlas, can be used in three ways to narrow down what tree species to plant: first, by taking account of 
contemporary climate only; second, by considering future climate only; or, third, by considering both 
situations. In the last case, priority is given to the tree species that are predicted to be present in the future 
and that are present currently. This last option is an attractive one for both maximizing the probability of 
initial tree-planting success (establishment) and the likelihood of obtaining products and services from 
planted trees when these will only be fully realized decades later (e.g., when the product is timber or the 
service is carbon sequestration). For further information on these points, please refer to Kindt et al. (2023).

http://atlas.worldagroforestry.org/
http://atlas.worldagroforestry.org/
https://www.worldagroforestry.org/tree-knowledge
https://www.worldagroforestry.org/project/provision-adequate-tree-seed-portfolio-ethiopia
https://www.worldagroforestry.org/project/provision-adequate-tree-seed-portfolio-ethiopia
http://dx.doi.org/10.1016/j.cosust.2013.07.013
https://onlinelibrary.wiley.com/doi/10.1111/ele.12624


2

In this working paper, we describe the methods behind the creation of the online atlas. These methods, 
and most of the occurrence observations behind our maps, are available publicly. By sharing our 
methods, we hope they can be used more widely for mapping tree species distributions in current and 
predicted future climates. This would apply for mapping other tree species in Africa and for undertaking 
mapping on other continents. In this working paper, we do not discuss the interpretation of our maps 
– this will be covered in other, forthcoming publications. Readers of this working paper should also 
note that its purpose is not to provide an introduction to species distribution modelling methods. For 
readers who are not familiar with the basic methods for creating habitat suitability maps from species 
occurrence data and environmental raster data, we suggest they read the references we provide in our 
description of steps in the subsequent sections of this paper. 

Overall, our modelling relies heavily on scripts run in the R software package.1 Guisan et al. (2017) 
and Hijmans and Elith (2016‒2021; https://rspatial.org/raster/sdm/index.html) specifically address 
the use of R for species distribution modelling. Another example R script for species distribution 
modelling, which showcases many of the same methods used for creating the current atlas, is 
available from https://rpubs.com/Roeland-KINDT/854918. The following tutorial shows how to 
use the graphical user interface of BiodiversityR for species distribution modelling: https://www.
researchgate.net/publication/301515736_Ensemble_suitability_modelling_with_the_new_GUI_
interface_of_BiodiversityR. Good starting points for an overall understanding of species distribution 
modelling are Guisan and Thuiller (2005), Guisan et al. (2017), Booth (2018) and Kindt (2018b). Note 
also that the following video is a recording of a seminar about our atlas: https://www.youtube.com/
watch?v=csKvEeHl3jA. 

In the following sections of this working paper, we discuss, step-by-step, our methods for atlas 
development. The different steps proceed from the collection of information on environmental 
predictor variables and species’ occurrences for prioritized species, through data processing and model 
calibration, to the generation of the final maps. We also summarize the visualization of outputs in the 
online atlas. 

1  We ran scripts in R version 3.6.1 (R Core Team 2019) for procedures described in Sections 3 to 9 of this working paper; 
in R version 3.6.0 for model calibrations and the generation of suitability maps in Section 10; and in R version 4.0.2 (R Core 
Team 2020) for procedures in Sections 11 to 15, and for the creation of the maps shown in the atlas (Section 16).

https://www.cambridge.org/core/books/habitat-suitability-and-distribution-models/A17F74A3418DBF9ADA191A04C35187F9
file:///C:\Users\iankd\Documents\IKD%20current\Biodiversity%20briefs,%20TPPs%20and%20new%20ICRAF-CIFOR%20strategy\Climate%20change%20atlas\2016‒2021
https://rspatial.org/raster/sdm/index.html
https://rpubs.com/Roeland-KINDT/854918
https://www.researchgate.net/publication/301515736_Ensemble_suitability_modelling_with_the_new_GUI_interface_of_BiodiversityR
https://www.researchgate.net/publication/301515736_Ensemble_suitability_modelling_with_the_new_GUI_interface_of_BiodiversityR
https://www.researchgate.net/publication/301515736_Ensemble_suitability_modelling_with_the_new_GUI_interface_of_BiodiversityR
https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1461-0248.2005.00792.x
https://www.cambridge.org/core/books/habitat-suitability-and-distribution-models/A17F74A3418DBF9ADA191A04C35187F9
https://www.sciencedirect.com/science/article/abs/pii/S0378112718310879
https://www.sciencedirect.com/science/article/abs/pii/S1364815217305303
https://www.youtube.com/watch?v=csKvEeHl3jA
https://www.youtube.com/watch?v=csKvEeHl3jA


2 Selection of species

In this section, we explain how we came up with an initial list of tree species for modelling species 
distributions. We started with 153 species at this stage, a number later reduced to 127 species, as will 
be explained in subsequent sections.

An initial selection of priority tree species for the PATSPO project was undertaken in 2017. A ‘Top 96’ 
list of species was compiled first (Kindt 2018a). This included 25 priority tree species2 identified in 
the Ethiopian Country Report for the State of the World’s Forest Genetic Resources report (SoW-FGR; 
Institute of Biodiversity Conservation 2012); and other tree species in the SoW-FGR that were listed 
as important for solid wood production, for energy, for non-wood products, for agroforestry systems, 
for environmental services, and that have social values (see Table 4.1 in Kindt 2018a). Also included in 
Kindt’s ‘Top-96’ list are tree species mentioned in the SoW-FGR for which genetic variability has been 
assessed; for which there are genetic or seed improvement programs; that are target species for in 
situ conservation; that have seed production areas; and for which seed are distributed by Ethiopia’s 
Forestry Research Centre (FRC). The ‘Top 96’ of Kindt (2018a) further included tree species recorded on 
the seed price lists of the national and subnational (regional) tree seed centers in Ethiopia; and species 
imported by the High Value Tree Crops project.

Species were classified as native or exotic to Ethiopia based on information available from the SoW-FGR and 
the Useful Trees and Shrubs of Ethiopia publication (Bekele-Tesemma et al. 2007). For species that were not 
described in these sources, the Plants of the World Online portal (POWO; http://powo.science.kew.org/; see 
also Section 15) was consulted to identify their origin (accessed 22 November 2017).

From a ‘long list’ of 240 candidate species for species distribution modelling prepared at the same time 
as the ‘Top 96’ list (Kindt 2018a: Appendix II therein), the ‘Top 96’ list was expanded to 153 species. This 
was done by adding 57 further species that were native to Ethiopia and that were also included either 
in the Agroforestree Database (Orwa et al. 2009) or the University of Copenhagen Seed Leaflets series 
(from 1983 ongoing). Inclusion of the species in the Agroforestree Database or Seed Leaflets series 
was used as a proxy for the general usefulness of the trees in agroforestry and forestry. Table 1 lists all 
153 species taken forward at this initial stage for distribution modelling.

2  Two species identified among the priority 27 in the Ethiopian Country Report for the SoW-FGR (Table 4 therein List of 
priority forest tree and shrub species), Acacia drepanolobium and Prosopis juliflora, are considered to be invasive species, 
and were not included in our modelling. 

https://www.worldagroforestry.org/output/preparation-species-distribution-modelling
https://www.fao.org/3/i3825e/i3825e23.pdf
https://www.worldagroforestry.org/output/preparation-species-distribution-modelling
https://www.worldagroforestry.org/output/preparation-species-distribution-modelling
http://apps.worldagroforestry.org/usefultrees/country-species.php?country=13
http://powo.science.kew.org/
https://www.worldagroforestry.org/output/preparation-species-distribution-modelling
https://www.worldagroforestry.org/output/agroforestree-database
https://ign.ku.dk/english/publications/publications/previous-publications-series/seed-leaflets/


Table 1. 153 tree species3 selected as initial candidates for species distribution modelling. The ‘Criterion’ 
column indicates how each species was selected (T25: among the ‘Top 25’ species; T96: otherwise among the 
‘Top 96’ species; A: native species listed in the Agroforestree Database; L: native species listed in the Seed 
Leaflets series). Origin distinguishes between native (N) and exotic (E) to Ethiopia. The remaining columns 
document whether the species is listed in the Ecocrop database (E), the Selection of Forages for the Tropics (F), 
the Global Species Matrix (G), the Tropical Forestry Handbook (H), the Food Composition database (U) and the 
Wood Database (W).4

Species Criterion Origin E F G H U W
Acacia abyssinica T96 N x - - - - -
Acacia decurrens T96 E x - - x - -
Acacia lahai A N - - - - - -
Acacia melanoxylon T96 E x - - x - x
Acacia nilotica T96 N x x x x - -
Acacia polyacantha T96 N x - - - - -
Acacia saligna T96 E x - x x - -
Acacia senegal T25 N x - x x - -
Acacia seyal T96 N x - x - - x
Acacia sieberiana A N x - - - - -
Acacia tortilis T96 N x - x x - -
Adansonia digitata T25 N x - x - - -
Afrocarpus falcatus T25 N x - - - - -
Albizia grandibracteata T96 N - - - - - -
Albizia gummifera T96 N - - - - - -
Albizia lebbeck T96 E x x x x - x
Albizia schimperiana T96 N - - - - - -
Annona senegalensis A N x - - - - -
Anogeissus leiocarpa L N - - - - - -
Antiaris toxicaria A N - - - - - -
Azadirachta indica T96 E x - x x - -
Balanites aegyptiaca T96 N x - x - - -
Bauhinia thonningii T96 N x - x - - -
Berchemia discolor A N x - - - - -
Borassus aethiopum AL N x - x - - -
Boswellia microphylla T96 N - - - - - -
Boswellia neglecta T96 N - - - - - -
Boswellia ogadensis T96 N - - - - - -
Boswellia papyrifera T25 N - - - - - -
Boswellia pirottae T96 N - - - - - -
Boswellia rivae T96 N - - - - - -
Bridelia micrantha AL N x - - - - -
Cajanus cajan T96 E x x x - x -

3  Species names in the atlas are current names standardized with World Flora Online (May 2019 version, WFO 2021; 
http://www.worldfloraonline.org/) via the WorldFlora package (Kindt 2020). Naming authorities are provided in Table A1.1 
(Appendix 1). Synonyms are available from Tables A1.2 and A1.3. 
4  Information from these (and other) databases was ‘mined’ recently to generate a prioritized list of 100 tree species for 
planting in the tropics and subtropics (Kindt et al. 2021). Details about the databases are provided in this publication.

continued on next page

http://www.worldfloraonline.org/
https://doi.org/10.1002/aps3.11388
https://worldagroforestry.org/publication/one-hundred-tree-species-prioritized-planting-tropics-and-subtropics-indicated-database
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Species Criterion Origin E F G H U W
Calliandra calothyrsus T96 E x x x x - -
Callistemon citrinus T96 E - - - - - -
Calotropis procera A N x - x - - -
Capparis tomentosa A N x - - - - -
Carica papaya T96 E x - - - x -
Casuarina cunninghamiana T96 E x - - - - -
Casuarina equisetifolia T96 E x - x x - -
Catha edulis T25 N x - - - - -
Ceiba pentandra 5 AL E x - x x - -
Celtis africana T96 N - - - - - -
Citrus sinensis T96 E x - - - x -
Coffea arabica T25 N x - - - - -
Combretum aculeatum AL N x - - - - -
Combretum collinum A N - - - - - -
Combretum molle T96 N x - - - - -
Commiphora africana T96 N x - - - - -
Commiphora guidottii T96 N - - - - - -
Commiphora myrrha T25 N - - - - - -
Cordeauxia edulis T25 N x - x - - -
Cordia africana T25 N x - - - - -
Corymbia citriodora T96 E - - - x - x
Croton macrostachyus T96 N - - - - - -
Cupressus lusitanica T25 E x - - x - x
Cupressus sempervirens T96 E x - - - - x
Cytisus proliferus T96 E x - x - - -
Dalbergia melanoxylon AL N x - - - - x
Delonix regia T96 E x - - x - -
Dichrostachys cinerea A N x - - - - -
Diospyros mespiliformis A N x - - - - -
Dobera glabra A N x - - - - -
Dodonaea viscosa T96 N x - - - - -
Dombeya torrida A N - - - - - -
Dovyalis abyssinica T96 N - - - - - -
Dovyalis caffra T96 E x - - - - -
Ekebergia capensis T96 N x - - - - -
Entada abyssinica T96 N x - - - - -
Erythrina abyssinica T96 N x - - - - -
Erythrina brucei T96 N - - - - - -
Eucalyptus camaldulensis T25 E x - x x - x

5  The exotic species Ceiba pentandra was included among the 153 candidate species as it had been identified as native to 
Ethiopia by Bekele-Tesemma et al. (2007), whereas information from Plants of the World Online (POWO) – compiled later 
and taken as a more authoritative source – indicated it to be exotic to the country.

continued on next page

Table 1. Continued

http://apps.worldagroforestry.org/usefultrees/country-species.php?country=13
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Species Criterion Origin E F G H U W
Eucalyptus globulus T25 E x - x x - -
Eucalyptus grandis T96 E x - x x - x
Eucalyptus saligna T96 E x - - x - -
Eucalyptus viminalis T96 E x - - x - -
Euphorbia tirucalli A N x - x x - -
Faidherbia albida T25 N x - x x - -
Ficus carica T96 E x - - - x -
Ficus sur T96 N - - - - - -
Ficus sycomorus T96 N x - - - - -
Flacourtia indica A N x - - - - -
Flueggea virosa A N - - - - - -
Garcinia livingstonei A N - - - - - -
Gardenia volkensii L N - - - - - -
Grevillea robusta T25 E x - - x - x
Grewia damine A N x - - - - -
Grewia villosa A N - - - - - -
Hagenia abyssinica T25 N x - - - - -
Hyphaene thebaica A N x - x - - -
Ilex mitis A N - - - - - x
Jacaranda mimosifolia T96 E x - - x - -
Jatropha curcas T96 E x - x - - -
Juniperus procera T25 N x - - - - x
Kigelia africana AL N x - - - - -
Lawsonia inermis A N x - x - - -
Leucaena leucocephala T96 E x x x x - -
Maerua aethiopica T96 N - - - - - -
Malus domestica T96 E x - - - x x
Mangifera indica T96 E x - - - x x
Markhamia lutea AL N x - - - - -
Melia azedarach T96 E x - x x - x
Milicia excelsa AL N x - - x - x
Millettia ferruginea T96 N - - - - - -
Moringa oleifera AL N x - x - x -
Moringa stenopetala T25 N x - x - - -
Nuxia congesta A N - - - - - -
Olea capensis A N x - - - - x
Olea europaea T96 N x - x - x x
Oxytenanthera abyssinica T25 N - - x - - -
Parkinsonia aculeata T96 E x - x x - -
Persea americana T96 E x - x - x -
Phoenix reclinata T96 N x - - - - -
Pinus patula T96 E x - - x - x

Table 1. Continued

continued on next page
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Species Criterion Origin E F G H U W
Polyscias fulva A N x - - - - -
Pouteria adolfi-friedericii T25 N - - - - - x
Prunus africana T25 N x - - - - -
Pterolobium stellatum T96 N - - - - - -
Rhamnus prinoides T25 N x - - - - -
Saba comorensis A N - - - - - -
Salvadora persica A N x - x - - -
Sarcocephalus latifolius A N - - - - - -
Schefflera abyssinica T96 N - - - - - -
Schinus molle T96 E x - - x - -
Sclerocarya birrea AL N x - x - - -
Searsia natalensis A N - - - - - -
Securidaca longipedunculata A N x - - - - -
Senna didymobotrya A N - - - - - -
Sesbania bispinosa T96 E x - - x - -
Sesbania sesban T96 N x x x - - -
Shirakiopsis elliptica A N x - - - - -
Spathodea campanulata T96 N x - - x - -
Steganotaenia araliacea A N - - - - - -
Stereospermum kunthianum A N x - - - - -
Strychnos henningsii A N - - - - - -
Strychnos innocua A N x - - - - -
Strychnos spinosa A N x - - - - -
Syzygium guineense A N x - - - - -
Tamarindus indica T25 N x - x x x x
Tamarix aphylla A N x - - x - -
Terminalia brownii T96 N x - - - - -
Trichilia emetica AL N - - x - - -
Vangueria madagascariensis A N x - - - - -
Vepris nobilis A N - - - - - -
Vernonia amygdalina A N x - - - - -
Vitellaria paradoxa T25 N x - x - - -
Vitex doniana A N x - - - - -
Warburgia ugandensis T96 N x - - - - -
Ximenia americana AL N x - - - - -
Yushania alpina T25 N - - - - - -
Ziziphus jujuba 6 T25 N - - - - x -
Ziziphus mucronata A N x - - - - -
Ziziphus spina-christi T96 N - - - x - -

6  In the more recent (January 2023) version of World Flora Online, Ziziphus mauritiana is no longer listed as a synonym 
of Ziziphus jujuba. Z. mauritiana was listed in the original ‘Top 25’ species, whereas the synonym of Z. jujuba is used in 
the atlas. 

Table 1. Continued



3 Predictor variables

In this section, we explain how we came up with the list of bioclimatic, soil and topographic variables 
used to model the distributions of prioritized tree species (see also https://rspatial.org/raster/sdm/4_
sdm_envdata.html).

Nineteen bioclimatic candidate predictor variables for generating species distributions were 
downloaded for the historical baseline climate of 1970 to 2000 from WorldClim 2.1 (Fick and Hijmans 
2017; https://www.worldclim.org/; accessed April 2020). Downloads were at resolutions of 30 arc-
seconds (~1 km) and 2.5 arc-minutes (150 arc-seconds, ~5 km). The higher resolution values were used 
for model calibrations and the lower resolution values were used to generate the actual maps for the 
baseline climate (a similar approach was used by Hannah et al. 2020 for a pantropical study). These 
and other geospatial raster layers were accessed in R via the raster package (versions 2.8-19 and 3.4-5; 
Hijmans 2020).

The 19 bioclimatic candidate predictor variables from WorldClim 2.1, as above, were expanded with 16 
further bioclimatic predictors variables available from envirem (version 2.2; Title and Bemmels 2018) 
using the envirem::generateRasters function. Input rasters for this function, declared via the function 
of envirem::assignNames, included monthly precipitation and minimum, maximum and mean monthly 
temperatures, downloaded from WorldClim 2.1 at resolutions of 30 and 150 arc-seconds (see previous 
paragraph for reasoning). As envirem calculations further required information on extraterrestrial 
solar radiation, raster layers with this information were calculated for each year from 1970 to 2000 
separately via the envirem::ETsolradRasters function, and then averaged. 

Included also as a separate candidate bioclimatic predictor variable was the Moisture Index, calculated 
by dividing annual precipitation (bioclimatic variable BIO12 from WorldClim) by the annual potential 
evapotranspiration (PET) (bioclimatic variable annualPET from envirem).

Also added as a candidate bioclimatic predictor variable was AriditySeason, which is the balance between 
precipitation and PET for the dry season with the largest (most negative) such balance, calculated by 
the function of BiodiversityR::ensemble.PET.season (version 2.12-2; Kindt and Coe 2005). Among their 
environmental predictor variables, Hannah et al. (2020) used the similar variable accumulated aridity 
index, defined by the longest period where monthly PET was larger than the monthly precipitation. 
Another related variable to AriditySeason is the maximum climatological water deficit, as used by 
Chave et al. (2014; see also Do et al. 2021) to estimate the aboveground biomass of tropical trees, but 
AriditySeason also considers the occurrence of more than one rainy season in a particular location.

From the ENVIREM website (https://envirem.github.io/; accessed September 2016; note the use of 
capitals to differentiate the website from the envirem package mentioned above7), the topographic 
wetness index (variable topoWet) and topographic roughness index (variable tri) were also downloaded 
at resolutions of 30 and 150 arc-seconds. As above, the two different resolutions were required for 
model calibrations and actual map projections, respectively.

Soil measurements selected as candidate predictor variables were average bulk density (fine earth 
fraction in cg cm-3), clay content (particles < 0.002 mm in the fine earth fraction in g kg-1), silt content 
(particles ≥ 0.002 mm and ≤ 0.05 mm in the fine earth fraction in g kg-1) and soil pH in H2O (x 10). These 
measurements were obtained from SoilGrids250 (Hengl et al. 2017; https://www.isric.org/explore/

7  We use the same notations of ‘envirem’ and ‘ENVIREM’ in the remaining text to differentiate between the package and 
the website.

https://rspatial.org/raster/sdm/4_sdm_envdata.html
https://rspatial.org/raster/sdm/4_sdm_envdata.html
https://doi.org/10.1002/joc.5086
https://www.worldclim.org/
https://onlinelibrary.wiley.com/doi/full/10.1111/ecog.05166
https://cran.r-project.org/package=raster
https://doi.org/10.1111/ecog.02880
https://www.worldagroforestry.org/publication/tree-diversity-analysis-manual-and-software-common-statistical-methods-ecological-and
https://onlinelibrary.wiley.com/doi/full/10.1111/ecog.05166
https://doi.org/10.1111/gcb.12629
https://doi.org/10.1093/forestry/cpab046
https://envirem.github.io/
https://doi.org/10.1371/journal.pone.0169748
https://www.isric.org/explore/soilgrids
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soilgrids; May 2020 release version). Values were taken for each variable from soil depths of 5 to 15 cm, 
15 to 30 cm, 30 to 60 cm and 60 to 100 cm, before averaging for the variable for all soil depths. These 
were the same averaged soil variables used by Hannah et al. (2020), with the exception of depth to 
bedrock, which they also used.8 Another difference in our analysis compared with Hannah et al. was 
that we used a higher resolution of 250 m for model calibrations. Soil variables, only at the higher 
resolution of 2.5 arc-minutes, were downloaded (August 2020) as raster layers by adapting an R script 
available from https://git.wur.nl/isric/soilgrids/soilgrids.notebooks/-/blob/master/markdown/wcs_
from_R.md. This script results in averaged soil data at the selected resolution. After creating subsets of 
spatially thinned occurrence observations (see Sections 6 and 7) for each tree species, soil information 
was extracted as comma-separated data files from the highest resolution of 250 m of SoilGrids250 
via Soilgrids REST API (https://rest.isric.org/soilgrids/v2.0/docs). This was done separately for each 
observation. The same method was used to extract soil information for background locations (see 
Section 8). A particular reason for us to include soil variables in our analysis was to model tree species 
that are edaphic specialists (Corlett and Tomlinson 2020, Hannah et al. 2020).

Once sets of candidate variables had been extracted, a Variance Inflation Factor (VIF; Fox and Monette 
1992) analysis was carried out via function BiodiversityR::ensemble.VIF.dataframe to select a subset 
of lesser-correlated predictor variables for actual modelling, setting argument VIF.max to 5. First, a 
data.frame was created that contained all the information for the full set of background locations from 
the highest resolution data sets (250 m for soil variables and 30 arc-seconds for the other variables). 
After excluding the records with missing data, the data.frame contained 9,898 records.9 Initially, we 
had intended to keep all of the variables of ariditySeason, BIO6 (minimum temperature of the coldest 
month10), Moisture Index and growingDegDays5 in our final subset of chosen variables for modelling, 
based in part on our reading of Booth (2016). However, within our final subset, we only retained 
AriditySeason, as several of the above variables had a final VIF > 10. 

Table 2. Final subset of predictor variables selected for species suitability modelling in our analysis. 
VIF = Variance Inflation Factor.

Predictor variable VIF VIF range Source Comment
AriditySeason 9.309 9.14 - 9.96 BiodiversityR
BIO18 4.144 3.99 - 4.20 WorldClim Precipitation of the warmest quarter
PETWettestQuarter 3.379 3.41 - 3.68 envirem
topoWet 3.041 3.56 - 3.77 ENVIREM
PETColdestQuarter 2.688 2.75 - 2.89 envirem
tri 2.595 2.99 - 3.19 ENVIREM
BIO15 2.515 2.22 - 2.33 WorldClim Precipitation seasonality
BIO2 2.500 2.50 - 2.67 WorldClim Mean diurnal range
PETDriestQuarter 2.478 2.49 - 2.73 envirem
bdod 2.165 1.48 - 1.54 SoilGrids250
BIO14 1.970 1.94 - 2.03 WorldClim Precipitation of driest month
clay 1.750 1.84 - 1.89 SoilGrids250
BIO19 1.658 1.61 - 1.67 WorldClim Precipitation of driest quarter
silt 1.613 1.75 - 1.82 SoilGrids250
monthCountByTemp10 1.552 1.36 - 1.45 envirem

8  Depth to bedrock was excluded, as R2 values for 10-fold cross-validations were below 55% (Hengl et al. 2017: Table 1). 
For our retained variables, R2 values ranged from 72.6% to 83.4%. 
9  10,000 random locations were selected across Africa with data on bioclimatic conditions (see Section 8). Missing data 
were a result of missing values for soil variables.
10  We tried both BIO5 (maximum temperature of the warmest month) and BIO6 as alternatives in VIF analyses. For both, 
VIF values were above 10.

https://www.isric.org/explore/soilgrids
https://onlinelibrary.wiley.com/doi/full/10.1111/ecog.05166
https://git.wur.nl/isric/soilgrids/soilgrids.notebooks/-/blob/master/markdown/wcs_from_R.md
https://git.wur.nl/isric/soilgrids/soilgrids.notebooks/-/blob/master/markdown/wcs_from_R.md
https://rest.isric.org/soilgrids/v2.0/docs
https://doi.org/10.1016/j.tree.2019.12.007
https://onlinelibrary.wiley.com/doi/full/10.1111/ecog.05166
https://doi.org/10.1080/01621459.1992.10475190
https://doi.org/10.1016/j.foreco.2016.02.009
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169748
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Our final predictor subset consisted of 15 variables, all with VIF values below 5, except for AriditySeason 
with a VIF below 10 (Table 2). Settling on these VIF limits was consistent with previous studies. Ranjitkar 
et al. (2014a), for example, used a VIF threshold of 5 to select predictor variables for suitability 
modelling, as recommended by Rogerson (2000). Naimi et al. (2013), Ranjitkar et al. (2014b), de Sousa 
et al. (2019) and Ramirez-Villegas et al. (2020) in their analyses used a threshold of 10 for predictor 
variable selection. For our chosen subset of variables, high pairwise correlations (of magnitude ≥ 0.8; 
the limit set by Ranjitkar et al. 2014a) were observed only between AriditySeason and BIO18, and 
between topoWet and tri (Figures 1 to 3).

VIF was calculated for the highest resolution data available. The VIF range was obtained from 10 
repetitions of the analysis, with default settings for the BiodiversityR::ensemble.VIF function using the 
2.5 arc-minutes raster layers as predictors to create baseline maps.

Figure 1. Scatterplot matrix showing correlations among AriditySeason and selected predictor variables 
from WorldClim. The graph was created with function BiodiversityR::ensemble.pairs using default settings 
(1,000 randomly selected points) for the baseline raster layers at 2.5 minutes resolution.

https://doi.org/10.1016/j.gecco.2014.07.001
https://doi.org/10.1111/j.1600-0587.2013.00205.x
https://doi.org/10.1016/j.ecolmodel.2014.03.003
https://doi.org/10.1038/s41598-019-45491-7
https://doi.org/10.1111/ddi.13046
https://doi.org/10.1016/j.gecco.2014.07.001
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Figure 3. Scatterplot matrix showing correlations among AriditySeason and selected predictor variables from 
ENVIREM and SoilGrids250. The graph was created with function BiodiversityR::ensemble.pairs with default 
settings (1,000 randomly selected points) using the baseline raster layers at 2.5 minutes resolution.

Figure 2. Scatterplot matrix showing correlations among AriditySeason and selected predictor variables 
from envirem. The graph was created with function BiodiversityR::ensemble.pairs with default settings 
(1,000 randomly selected points) using the baseline raster layers at 2.5 minutes resolution.
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4 Future climates

In this section, we provide information about the future climates that we used for species distribution 
modelling for prioritized tree species in the atlas.

Future climates in the atlas correspond to projections for the middle of the 21st century (2050s, 2041‒2060) 
under a low-emissions scenario (Shared Socioeconomic Pathway [SSP] 1-2.6) and a high-emissions scenario 
(SSP 3-7.0) from CMIP6. SSP 1-2.6 is the CMIP6 equivalent of the CMIP5 low-emissions scenario of RCP2.6. 
SSP 3-7.0 is a middle-of-the-road high-emissions scenario of CMIP6, between worst case and optimistic 
outcomes when the world fails to enact any climate policies (for further information, see: https://www.
carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained). 

For both of these scenarios, bioclimatic and monthly climatic data were downloaded for nine Global 
Climate Models (GCMs, or General Circulation Models) available from WorldClim 2.1. These are: BCC-
CSM2-MR, CNRM-CM6-1, CNRM-ESM2-1, CanESM5, GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L, MIROC6 
and MRI-ESM2-0. The resolution of the raster layers we used was 2.5 arc-minutes. This was the highest 
resolution available for future climates from WorldClim 2.1, when downloading these raster layers 
in 2020.

Values for the expanded set of bioclimatic variables (AriditySeason, Moisture Index and variables 
generated via envirem) were calculated for each GCM and each emission scenario with similar methods 
to those used for the baseline climate layers. As these calculations required details on extraterrestrial 
solar radiation, relevant raster layers were first created for each year from 2041 to 2060 via the function 
envirem::ETsolradRasters, and these were then averaged.

https://www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained
https://www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained


5 Compilation of occurrence observations

In this section, we explain how we collected occurrence data for prioritized tree species. Species 
occurrence observations in geographic space are the basis for modelling individual species distributions.  

We combined occurrence data for our prioritized species from eight sources (Table 3). Three of the 
datasets used (AERTS, DEMISSEW and BORCHARDT) only documented occurrences in Ethiopia, but 
we included these given our particular focus on that country. (Note that spatial and environmental 
thinning procedures described in the following sections reduce potential bias towards Ethiopia.) As the 
AERTS, DEMISSEW and BORCHARDT datasets refer only to Ethiopia, we did not use the data cleaning 
protocols described in the next paragraph. (For the same reason, we also did not use such protocols for 
the Burkina Faso TERRIBLE dataset.)

For the datasets of GBIF and NATURALIS, we used data cleaning protocols available via the 
CoordinateCleaner package (version 1.0-7; Zizka et al. 2019). We deemed these cleaning procedures 
unnecessary for pan-African datasets where the procedures for excluding erroneous locations were 
clearly documented (for BIEN, version 1.2.4, see Maitner et al. 2017; for RAINBIO, see Dauby et al. 
2016). We used current names for location determinations and known synonyms (see Tables A1.2 and 
A1.3, Appendix 1).

Table 3. Datasets of occurrence observations used in our analysis. The ‘Records’ column indicates the number 
of references in total to our initially chosen 153 tree species.

Dataset Records Compilation
GBIF
https://www.gbif.org/ 

257,988 Data were downloaded on 1 October 2018 from GBIF via the 
function of dismo::gbif (version 1.1-4; Hijmans et al. 2017). 
Records without longitude and latitude data were removed. 
Records for synonym names that were not accepted 
synonyms according to ThePlantList (consulted in November 
2018) were removed. Observations where the basis of the 
record was “FOSSIL_SPECIMEN” or “UNKNOWN” were 
removed. Records flagged by the CoordinateCleaner::Clean
Coordinates function as records with potentially erroneous 
geolocation data were removed, including records where 
the country designation did not correspond to the country 
boundaries from rnaturalearth::ne_countries(scale = 10). 
See Appendix 2 for identities of the occurrence datasets.

BIEN
https://bien.nceas.ucsb.edu/
bien/ 

74,213 Data were downloaded on 18n July 2020 via the function of 
BIEN::BIEN_occurrence_species with default settings of the 
function. See Appendix 3 for details on the custodians of the 
data.

RAINBIO
https://gdauby.github.io/
rainbio/ 

11,991 Data were compiled from the RAINBIO mega database, 
sourcing data both from a file with native species and a file 
with exotic species.

NATURALIS
https://bioportal.naturalis.nl 

9,587 Data were compiled by co-author Jan Wieringa from 
herbarium records available in the Naturalis Herbarium. 
Records without longitude and latitude data were removed. 
Records flagged by the CoordinateCleaner::CleanCoor
dinates function as records with potentially erroneous 
geolocation data were removed, including records where 
the country designation did not correspond to the country 
boundaries from rnaturalearth::ne_countries(scale = 10).

continued on next page

https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.13152
https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.12861
https://doi.org/10.3897/phytokeys.74.9723
https://www.gbif.org/
https://cran.r-project.org/package=dismo
https://bien.nceas.ucsb.edu/bien/
https://bien.nceas.ucsb.edu/bien/
https://gdauby.github.io/rainbio/
https://gdauby.github.io/rainbio/
https://bioportal.naturalis.nl
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Dataset Records Compilation
TERRIBLE 7,823 Data were originally compiled by lead author Roeland Kindt 

for species suitability modelling for Burkina Faso, available 
from a map of tree and shrub distributions in the country 
prepared by Terrible (1975), as documented in Gaisberger et 
al. (2016).

AERTS 1,911 Data were compiled from supplementary materials available 
from a study on church forests in Ethiopia by Aerts et al. 
(2016).

DEMISSEW 597 Data were compiled by co-author Sebsebe Demissew from 
information available in the Ethiopian herbarium.

BORCHARDT 249 Data were compiled by co-author Peter Borchardt from 
information on mother trees selected as individual seed 
sources for tree planting and restoration projects in which 
he has been involved. 

Table 3. Continued

https://doi.org/10.1371/journal.pone.0190760
https://doi.org/10.1016/j.scitotenv.2016.02.034


6 Spatial thinning of occurrence observations

In this section, we explain how we spatially thin occurrence data to reduce sampling biases that can 
otherwise occur in generating species distribution maps. 

To reduce possible sampling biases with occurrence data, we applied spatial thinning using the functions 
BiodiversityR::ensemble.spatialThin and BiodiversityR::ensemble.spatialThin.quant, based on a similar 
algorithm to spThin::thin (Aiello-Lammens 2015). This procedure thins out species records using a 
random systematic approach to record removal until all paired occurrences are above a minimum 
distance threshold. 

First, we rounded all occurrence coordinates to four decimal places and removed duplicate records for 
each species (Table 4). Second, occurrence data were limited to Africa, the region covered by the atlas. 
Then, for species where the number of retained records in Africa was above 50, the argument of thin.km 
in the BiodiversityR::ensemble.spatialThin and BiodiversityR::ensemble.spatialThin.quant functions 
was set at 10 km. This minimum distance has been widely used in species distribution modelling studies 
(Aiello-Lammens 2015, Title and Bemmels (2018), Castellanos et al. 2019, van Zonneveld et al. 2020). 
The criterion of 10 km was applied to 121 tree species from our prioritized species list (see ‘km’ column 
in Table 4); only two of these species11 then failed additional criteria for species distribution modelling 
(as explained in Section 10). 

For 32 tree species on our initial prioritized list for which the number of retained records in Africa was 
50 or lower (Table 4: ‘Africa’ column), the argument of thin.km was set at a less stringent 2 km for 
spatial filtering with BiodiversityR::ensemble.spatialThin. This meant that one occurrence observation 
was retained per 30 arc-seconds grid cell, a similar procedure for limiting occurrence records to unique 
grid cells to that used for model calibrations by a number of other authors (e.g., de Sousa et al. 2019, 
Thuiller et al. 2019, Fremout et al. 2020, Hannah et al. 2020). Lowering the distance criterion from 
10 km to 2 km captured another eight species12 that could be taken forward for distribution modelling 
(meaning 121 - 2 + 8 = 127 species in total).

Table 4. Results from the spatial thinning of occurrence observations. 0.0001: Number of records retained 
after rounding longitude and latitude to four decimals and removing duplicate records; Africa: Number of 
records retained in Africa; km: setting of argument thin.km for function BiodiversityR::ensemble.spatialThin 
and BiodiversityR::ensemble.spatialThin.quant; Thinned: Number of records retained after thinning, used to 
sort species in the table; Percentage: % retained from the ‘0.0001’ records; SDM: whether a species distribution 
model was fitted ultimately (see text and Table 9).

Species 0.0001 Africa km Thinned Percentage SDM
Combretum molle 1405 1403 10 910 64.9 YES
Dichrostachys cinerea 1436 1377 10 896 65.1 YES
Combretum collinum 1853 1852 10 837 45.2 YES
Vitellaria paradoxa 10176 10176 10 774 7.6 YES
Tamarindus indica 2746 1752 10 743 42.4 YES
Syzygium guineense 1046 1033 10 702 68.0 YES
Annona senegalensis 1232 1227 10 697 56.8 YES

11  These were Albizia grandibracteata and Millettia ferruginea: see Table 4.
12  These were Acacia decurrens, Boswellia neglecta, Boswellia papyrifera, Cupressus sempervirens, Dobera glabra, 
Pouteria adolfi-friedericii, Warburgia ugandensis and Yushania alpina; see Table 4.

continued on next page
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https://doi.org/10.1038/s41467-019-09519-w
https://doi.org/10.1111/gcb.15028
https://onlinelibrary.wiley.com/doi/full/10.1111/ecog.05166
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Species 0.0001 Africa km Thinned Percentage SDM
Anogeissus leiocarpa 4337 4331 10 689 15.9 YES
Flueggea virosa 2973 1291 10 687 53.2 YES
Acacia senegal 899 882 10 673 76.3 YES
Bauhinia thonningii 1315 1313 10 660 50.3 YES
Acacia nilotica 904 791 10 655 82.8 YES
Acacia sieberiana 1285 1281 10 655 51.1 YES
Strychnos spinosa 1073 1067 10 648 60.7 YES
Ficus sur 1326 1321 10 636 48.1 YES
Leucaena leucocephala 5499 1625 10 629 38.7 YES
Azadirachta indica 2425 2019 10 620 30.7 YES
Diospyros mespiliformis 1384 1381 10 606 43.9 YES
Sclerocarya birrea 1010 1004 10 606 60.4 YES
Adansonia digitata 1168 1096 10 589 53.7 YES
Ziziphus mucronata 675 669 10 564 84.3 YES
Ximenia americana 1890 801 10 561 70.0 YES
Acacia polyacantha 807 805 10 533 66.2 YES
Vitex doniana 1124 1118 10 533 47.7 YES
Grevillea robusta 2918 1461 10 503 34.4 YES
Calotropis procera 2237 1232 10 495 40.2 YES
Euphorbia tirucalli 1326 1191 10 492 41.3 YES
Phoenix reclinata 765 714 10 491 68.8 YES
Melia azedarach 4874 993 10 472 47.5 YES
Delonix regia 1820 1028 10 471 45.8 YES
Jacaranda mimosifolia 5079 1004 10 471 46.9 YES
Ekebergia capensis 652 650 10 470 72.3 YES
Ceiba pentandra 3220 2378 10 462 19.4 YES
Kigelia africana 741 690 10 461 66.8 YES
Balanites aegyptiaca 841 772 10 440 57.0 YES
Olea europaea 18801 536 10 436 81.3 YES
Sarcocephalus latifolius 913 907 10 432 47.6 YES
Bridelia micrantha 600 594 10 428 72.1 YES
Milicia excelsa 1366 1364 10 414 30.4 YES
Senna didymobotrya 1156 978 10 405 41.4 YES
Dodonaea viscosa 24913 552 10 397 71.9 YES
Entada abyssinica 784 783 10 396 50.6 YES
Acacia tortilis 547 437 10 384 87.9 YES
Trichilia emetica 637 634 10 381 60.1 YES
Acacia seyal 490 487 10 375 77.0 YES
Commiphora africana 445 442 10 374 84.6 YES
Ficus sycomorus 614 497 10 368 74.0 YES
Borassus aethiopum 1421 1418 10 364 25.7 YES
Sesbania sesban 668 482 10 363 75.3 YES
Celtis africana 462 453 10 359 79.2 YES

Table 4. Continued

continued on next page
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Species 0.0001 Africa km Thinned Percentage SDM
Stereospermum kunthianum 803 803 10 344 42.8 YES
Albizia lebbeck 1334 742 10 326 43.9 YES
Ilex mitis 519 514 10 326 63.4 YES
Flacourtia indica 586 466 10 325 69.7 YES
Parkinsonia aculeata 2699 582 10 300 51.5 YES
Jatropha curcas 1300 450 10 292 64.9 YES
Cajanus cajan 1212 356 10 288 80.9 YES
Rhamnus prinoides 336 334 10 279 83.5 YES
Vernonia amygdalina 354 338 10 276 81.7 YES
Securidaca longipedunculata 334 333 10 265 79.6 YES
Capparis tomentosa 321 318 10 263 82.7 YES
Combretum aculeatum 314 312 10 255 81.7 YES
Nuxia congesta 330 325 10 252 77.5 YES
Albizia gummifera 358 354 10 251 70.9 YES
Faidherbia albida 371 290 10 251 86.6 YES
Salvadora persica 369 291 10 251 86.3 YES
Antiaris toxicaria 1987 1718 10 237 13.8 YES
Dovyalis caffra 665 619 10 226 36.5 YES
Saba comorensis 319 317 10 221 69.7 YES
Dalbergia melanoxylon 278 273 10 220 80.6 YES
Olea capensis 315 307 10 219 71.3 YES
Shirakiopsis elliptica 285 285 10 205 71.9 YES
Prunus africana 279 277 10 204 73.6 YES
Strychnos innocua 394 393 10 202 51.4 YES
Ziziphus jujuba 628 234 10 193 82.5 YES
Searsia natalensis 285 277 10 191 69.0 YES
Spathodea campanulata 869 261 10 190 72.8 YES
Steganotaenia araliacea 244 244 10 185 75.8 YES
Garcinia livingstonei 226 222 10 179 80.6 YES
Mangifera indica 1835 754 10 179 23.7 YES
Erythrina abyssinica 218 215 10 178 82.8 YES
Grewia villosa 205 179 10 160 89.4 YES
Berchemia discolor 190 187 10 158 84.5 YES
Acacia saligna 3237 270 10 151 55.9 YES
Moringa oleifera 531 238 10 148 62.2 YES
Cordia africana 191 182 10 147 80.8 YES
Oxytenanthera abyssinica 242 242 10 139 57.4 YES
Lawsonia inermis 413 165 10 137 83.0 YES
Juniperus procera 201 171 10 132 77.2 YES
Sesbania bispinosa 183 137 10 132 96.4 YES
Croton macrostachyus 177 177 10 131 74.0 YES
Vepris nobilis 175 171 10 120 70.2 YES
Afrocarpus falcatus 224 174 10 117 67.2 YES

Table 4. Continued

continued on next page
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Species 0.0001 Africa km Thinned Percentage SDM
Gardenia volkensii 130 124 10 110 88.7 YES
Markhamia lutea 144 138 10 106 76.8 YES
Acacia abyssinica 133 132 10 105 79.5 YES
Hyphaene thebaica 354 342 10 104 30.4 YES
Pterolobium stellatum 127 125 10 103 82.4 YES
Polyscias fulva 136 134 10 102 76.1 YES
Strychnos henningsii 131 128 10 100 78.1 YES
Vangueria madagascariensis 172 141 10 100 70.9 YES
Pinus patula 794 223 10 92 41.3 YES
Catha edulis 110 98 10 86 87.8 YES
Acacia melanoxylon 22812 131 10 85 64.9 YES
Carica papaya 1470 141 10 81 57.4 YES
Grewia damine 90 87 10 79 90.8 YES
Eucalyptus camaldulensis 25511 241 10 73 30.3 YES
Dombeya torrida 102 96 10 71 74.0 YES
Acacia lahai 101 101 10 66 65.3 YES
Ziziphus spina-christi 835 76 10 63 82.9 YES
Dovyalis abyssinica 88 81 10 61 75.3 YES
Albizia schimperiana 69 69 10 59 85.5 YES
Terminalia brownii 74 74 10 59 79.7 YES
Hagenia abyssinica 91 81 10 57 70.4 YES
Albizia grandibracteata 82 82 10 53 64.6 NO
Coffea arabica 1106 77 10 53 68.8 YES
Schinus molle 4438 56 10 52 92.9 YES
Persea americana 1793 72 10 50 69.4 YES
Boswellia neglecta 50 50 2 49 98.0 YES
Pouteria adolfi-friedericii 50 49 2 49 100.0 YES
Millettia ferruginea 58 58 10 46 79.3 NO
Schefflera abyssinica 56 56 10 44 78.6 YES
Boswellia papyrifera 45 45 2 43 95.6 YES
Casuarina equisetifolia 1372 55 10 39 70.9 YES
Warburgia ugandensis 35 35 2 34 97.1 YES
Erythrina brucei 33 33 2 33 100.0 NO
Yushania alpina 35 35 2 33 94.3 YES
Acacia decurrens 2233 28 2 28 100.0 YES
Dobera glabra 25 21 2 21 100.0 YES
Commiphora myrrha 28 20 2 20 100.0 NO
Cupressus sempervirens 836 20 2 20 100.0 YES
Tamarix aphylla 581 23 2 19 82.6 NO
Boswellia rivae 19 19 2 18 94.7 NO
Casuarina cunninghamiana 2969 15 2 15 100.0 NO
Cupressus lusitanica 1184 14 2 14 100.0 NO
Eucalyptus globulus 5096 12 2 12 100.0 NO

Table 4. Continued

continued on next page
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Species 0.0001 Africa km Thinned Percentage SDM
Ficus carica 397 12 2 11 91.7 NO
Callistemon citrinus 1694 10 2 10 100.0 NO
Maerua aethiopica 11 11 2 10 90.9 NO
Eucalyptus grandis 1270 9 2 9 100.0 NO
Citrus sinensis 343 8 2 8 100.0 NO
Commiphora guidottii 9 9 2 8 88.9 NO
Boswellia microphylla 7 7 2 7 100.0 NO
Corymbia citriodora 1121 7 2 7 100.0 NO
Boswellia pirottae 6 6 2 6 100.0 NO
Calliandra calothyrsus 357 5 2 5 100.0 NO
Moringa stenopetala 9 5 2 5 100.0 NO
Boswellia ogadensis 4 4 2 4 100.0 NO
Eucalyptus saligna 2907 4 2 4 100.0 NO
Eucalyptus viminalis 12937 4 2 4 100.0 NO
Cordeauxia edulis 5 3 2 3 100.0 NO
Cytisus proliferus 735 3 2 3 100.0 NO
Malus domestica 18931 0 2 0 NO

Table 4. Continued



7  Environmental thinning of occurrence 
observations

In this section, we explain how we environmentally thin occurrence data to reduce sampling biases 
that can otherwise occur in generating species distribution maps. 

Table 5. Minimum number of occurrence observations recommended for species distribution modelling, 
according to selected references, ordered by number of recommended observations.

Reference Records Comments
Santini et al. (2021) 200‒500 These authors suggest using a large sample but also stress that no magic 

number exists, given: uncertainties about the true ecology of a species 
and its link to predictor variables; whether the species is in equilibrium 
with the environment; and whether presence points are biased

Feeley and Silman (2011) 200
Varela et al. (2014) 50 For non-filtered and biased data
Wisz et al. (2008) 30
van Proosdij et al. (2015) 25 For widespread species in Africa
Rivers et al. (2011) 15 Number of herbarium records required for IUCN Red List calculations
van Proosdij et al. (2015) 14 For narrow-ranged species in Africa
Varela et al. (2014) 5 For environmentally-filtered data. This number may increase for 

species with more complex niches, but also in these cases smaller 
environmentally-filtered datasets are expected to outperform larger 
biased datasets

According to different authors, the minimum number of occurrence records required for species 
distribution modelling ranges from 5 to > 200 observations (Table 5). Selecting occurrence observations 
less biased in environmental space can increase the performance of species suitability models (Varela et 
al. 2014, Castellanos et al. 2019). We therefore applied the BiodiversityR::ensemble.environmentalThin 
function for environmental filtering of the occurrence observations of some species. 

We used the following rules to calculate the number of occurrence observations to retain for each of 
our tree species (this number is used for argument thin.n in the function):
• Remove at least one third of observations closest in environmental space for species with at least 

75 occurrences after spatial thinning.
• Maximally retain 200 observations after environmental thinning.
• Minimally retain 50 observations after environmental thinning for species with 50 to 74 observations.
• No environmental thinning when the initial number of spatial occurrence records is 50 or below.

The targets of retained occurrence observations are summarized in Table 6. Our overall aim was to 
retain a high number of occurrence observations to calibrate species distribution models (see also 
Castellanos et al. 2019: Figure 3 therein).

For a subset of species, the environmental thinning process resulted in a dataset with fewer records 
than the target number. This was due to the second algorithm applied in the BiodiversityR::ensemble.
environmentalThin function, where the random selection process attempts to create smaller subsets 
with the same minimum environmental distance. 

https://doi.org/10.1111/ddi.13252
https://doi.org/10.1111/j.1472-4642.2011.00813.x
https://doi.org/10.1111/j.1600-0587.2013.00441.x
https://doi.org/10.1111/j.1472-4642.2008.00482.x
https://doi.org/10.1111/ecog.01509
https://doi.org/10.1016/j.biocon.2011.07.014
https://doi.org/10.1111/ecog.01509
https://doi.org/10.1111/j.1600-0587.2013.00441.x
https://doi.org/10.1111/j.1600-0587.2013.00441.x
https://doi.org/10.1111/2041-210X.13142
https://doi.org/10.1111/2041-210X.13142
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Table 6. Target number of environmentally thinned occurrence observations. Input represents the number of 
occurrence observations used to calculate the target.

Input Target Input Target Input Target
5 5 105 70 205 136

10 10 110 73 210 140
15 15 115 76 215 143
20 20 120 80 220 146
25 25 125 83 225 150
30 30 130 86 230 153
35 35 135 90 235 156
40 40 140 93 240 160
45 45 145 96 245 163
50 50 150 100 250 166
55 50 155 103 255 170
60 50 160 106 260 173
65 50 165 110 265 176
70 50 170 113 270 180
75 50 175 116 275 183
80 53 180 120 280 186
85 56 185 123 285 190
90 60 190 126 290 193
95 63 195 130 295 196

100 66 200 133 ≥ 300 200

Environmental thinning failed for three species: Albizia grandibracteata, Coffea arabica and Schinus 
molle. For these species, the occurrences of spatially-thinned observations alone were retained for 
modelling (see Table 4).



8 Compilation of background observations

In this section, we explain how we selected background (pseudo-absence) locations for species 
distribution modelling. 

Across the domain covered by the atlas, we randomly selected 10,000 background (pseudo-absence) 
locations (see https://rspatial.org/raster/sdm/3_sdm_absence-background.html) that had non-
missing values for bioclimatic predictor variables13 at the resolution of 30 arc-seconds. This was done 
via the dismo::randomPoints function and resulted in the locations shown in Figure 4. For each of 
the background locations, soil data were obtained via Soilgrids REST API (see Section 3). We excluded 
from our initial 10,000 background locations those with missing soil data, resulting in a final tally of 
9,898 random background locations with complete details for predictor variables.

13  Soil raster data were only obtained for the resolution of 2.5 arc-minutes, as described in Section 3.

Figure 4. Candidate background locations. Small, green symbols depict 9,898 randomly selected locations 
across Africa. Large, red symbols depict selected mountain peaks (see explanation in text).

https://rspatial.org/raster/sdm/3_sdm_absence-background.html
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Table 7. Mountains peaks added to the set of background locations14.

Mountain peak Height (in m) Mountain peak Height (in m)
Kibo (Uhuru Pk) 5895 Mount Cameroon 4040

Mount Kenya (Batian) 5199 Weshema / Wasema? 4030
Mawenzi (Hans Meyer Pk) 5148 Oldoinyo Lesatima 4001
Ngaliema / Mt Stanley 5109 Jebel n’Tarourt / Tifnout / Iferouane 3996
Mount Meru (Socialist Pk) 4566 Muggia 3950
Ras Dashen 4550 Dubbai 3941
Karisimbi 4507 Taska n’Zat 3912
Bwahit 4437 Mount Kinangop 3902
Tullu Demtu 4377 Cimbia 3900
Mount Elgon (Wagagai) 4321 Ieciuol ? 3840
Amba Farit 4270 Kawa / Caua / Lajo 3830
Abune Yosef / Guliba Amba 4260 Jbel Tignousti 3819
Bada 4195 Filfo / Encuolo 3805
Kaka / Kecha / Chiqe 4193 Kosso Amba 3805
Jbel Toubkal 4167 Baylamtu / Gavsigivla 3777
Muhavura 4127 Ouaougoulzat 3763
Guna 4120 Somkaru 3760
Choqa / Choke / Birhan 4100 Abieri 3750
Chilalo 4071 Arin Ayachi 3747
Ighil Mgoun 4068 Teide 3718

To the 9,898 randomly selected background locations, we added 40 locations representing the highest 
mountain peaks in Africa that were otherwise easy to miss in background location selection. This was 
important because some of our initial model runs predicted some (Afromontane) tree species to be 
suitable for mountain peaks. An initial list of 98 mountain peaks with location details was downloaded 
from Wikipedia (https://en.wikipedia.org/wiki/List_of_highest_mountain_peaks_of_Africa; accessed 
14 July 2020), and the peaks were ordered by altitude. We then created a new peak list, eliminating 
peaks lower down on the ordered original list if they were located less than 10 km from a mountain 
peak higher on the list. Pairwise geographical distances between mountain peaks were calculated via 
the function of geosphere::distGeo (version 1-5-10; Hijmans 2019). Ultimately, we decided to retain 
the 40 highest mountain peaks (Table 7).

Then, for each tree species, a separate set of background locations was selected as a subset from the 
full set of background locations constituting the initial random locations and the locations of mountain 
peaks. In a first step, for each species a subset of background locations was created by selecting only 
those locations within a 500 km buffer (created via function dismo::circles) of occurrence observations 
(Figure 5). This buffer width had been used earlier by Hannah et al. (2020) (see also mentions of 500 km 
as a potential migration or dispersal distance by Lazarus and McGill 2014, Hoenner et al. 2018 and 
Iverson et al. 2019).

14  The question marks associated with mountain peak names are as in the initial Wikipedia names list 

https://en.wikipedia.org/wiki/List_of_highest_mountain_peaks_of_Africa
https://cran.r-project.org/package=geosphere
https://onlinelibrary.wiley.com/doi/full/10.1111/ecog.05166
https://doi.org/10.1371/journal.pone.0105380
https://www.nature.com/articles/sdata2017206
https://www.mdpi.com/1999-4907/10/11/989/htm
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Table 8. Target number of background observations

Occurrence Background Occurrence Background Occurrence Background
5 400 75 750 145 1450

10 400 80 800 150 1500
15 400 85 850 155 1550
20 400 90 900 160 1600
25 400 95 950 165 1650
30 400 100 1000 170 1700
35 400 105 1050 175 1750
40 400 110 1100 180 1800
45 450 115 1150 185 1850
50 500 120 1200 190 1900
55 550 125 1250 195 1950
60 600 130 1300 200 2000
65 650 135 1350 500 5000
70 700 140 1400 1000 10000

Figure 5. For each species, background locations (small, green symbols) used for modelling were restricted 
to a 500 km buffer around occurrence locations (large, red symbols). The map shown here depicts occurrence 
and background locations for Faidherbia albida. 
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In a second step, the set of random background locations within the buffer was randomly subsetted via 
the base::sample function, using the following rules (see also Table 8):
• The target number for the subset of background locations should be 10 times the number of 

occurrence observations when these observations are 40 or more.
• When the number of occurrence observations is less than 40, the target should still be 400 

background observations.
• If fewer background locations are available than the target, then all available background locations 

should be retained.

For species with 50 or more occurrence observations, our algorithm for subsetting applied the same 
rules as Khoury et al. (2019). However, unlike in our case, Khoury et al. (2019) used background locations 
that were 100 times the number of occurrence locations for species with fewer than 50 occurrences.15

Our approach took account of the observations of the simulation study of Grimmet et al. (2020: their 
Figure 4) who showed that a prevalence of 0.1 (the ratio of occurrence to background locations) is a 
good compromise for the performance of different algorithms of species distribution modelling. The 
same authors found that using a prevalence of 0.05 also resulted in acceptable, but slightly lower, 
model performances among different algorithms.16 As in our case the lowest number of occurrence 
observations was 20 for the species retained for species suitability modelling (for Cupressus 
sempervirens, see Table 9 in next section), we expect our choices on setting background locations (at 
400 for species with fewer than 40 presence observations, corresponding to the lowest prevalence of 
0.05 = 20 / 400 for Cupressus sempervirens), to be appropriate.

15  The Khoury et al. (2019) algorithm creates the anomaly that the number of background locations does not always 
decrease for decreasing numbers of occurrence observations. For example, the algorithm selects 500 background 
observations for 50 species observations and 3,000 background observations for 30 species observations. 
16  As locations of mountain peaks within the 500 km buffer were added, prevalence values were slightly below 0.1 for 
most species.

https://doi.org/10.1016/j.ecolind.2018.11.016
https://doi.org/10.1016/j.ecolind.2018.11.016
https://doi.org/10.1016/j.ecolmodel.2020.109194
https://doi.org/10.1016/j.ecolind.2018.11.016


9  Spatial folding of occurrence and 
background observations

Figure 6. Occurrence and background locations for each species were assigned to four spatial folds with a 
size of 500 km. Larger symbols show occurrence observations, smaller symbols background locations, with the 
colour representing the fold. This figure shows the same locations for Faidherbia albida as for Figure 5.

In this section, we explain how we applied a spatial folding scheme to group presence and background 
locations for subsequent cross-validations in the generation of species distribution maps. 

Occurrence and background locations were assigned to four spatial folds via the BiodiversityR:: 
ensemble.spatialBlock function that internally calls the blockCV::spatialBlock function (Valavi et al. 
2018). In fourfold model cross-validation, locations from each single fold are used for the evaluation of 
models calibrated with locations from the other three folds (see Box 1 in Valavi et al. 2018). As argued 
by Valavi et al., spatial folding methods are preferred to conventional random techniques of cross-
validation since the latter can lead to underestimation of prediction error.

We set the size of the folds to 500 km (argument theRange = 500000), the same size as the magnitude 
of the circular buffer used to select background locations (see Section 8). In a first run for each species, 
we set the minimum number of locations in each fold (argument numLimit) to 20. For species where 
this target could not be achieved, we reduced the minimum number of locations to 10. In a final run 

https://doi.org/10.1111/2041-210X.13107
https://doi.org/10.1111/2041-210X.13107
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for species where the target of 10 could not be reached, we set the minimum target number to 5. As 
we judged 5 locations to be a minimum to evaluate model calibrations in cross-validation tests, species 
where this target could not be met were excluded from model calibrations (26 species in Table 9 with 
minimum occurrences in a fold < 5). As a consequence, the final atlas we generated contains maps for 
127 species, corresponding to the species in Table 9 with minimum occurrences in a fold ≥ 5.

Prior to applying the spatial folding function, occurrence and background locations were transformed 
to the equal-area Mollweide projection (https://spatialreference.org/ref/esri/53009/), as spatial folding 
requires equal-area coordinate reference systems (Valavi et al. 2018). After spatial folding, the locations 
were transformed back to their latitudes and longitudes (https://spatialreference.org/ref/epsg/4326/).

Table 9. Number of occurrence and background locations used for spatial folding. Minimum values are the 
minima among the four folds. Column SDM indicates whether a species distribution model was calibrated 
for a species, based on the minimum number of locations per fold to be 5 or larger. Species are ordered by 
‘Occurrence’, ‘Minimum’.

Species Occurrence Background SDM
All Minimum All Minimum

Ficus sycomorus 198 45 2011 496 YES
Kigelia africana 200 44 2031 468 YES
Jatropha curcas 191 43 1941 413 YES
Adansonia digitata 200 41 2022 478 YES
Vitex doniana 195 41 1981 476 YES
Acacia nilotica 200 40 2031 449 YES
Phoenix reclinata 196 40 1991 458 YES
Calotropis procera 200 38 2037 457 YES
Ekebergia capensis 200 38 2031 388 YES
Combretum collinum 197 38 2001 445 YES
Entada abyssinica 193 38 1961 389 YES
Balanites aegyptiaca 198 37 2011 434 YES
Borassus aethiopum 196 37 1983 479 YES
Parkinsonia aculeata 200 36 2037 451 YES
Ficus sur 199 36 2021 445 YES
Albizia gummifera 165 36 1681 357 YES
Flueggea virosa 199 35 2031 451 YES
Syzygium guineense 199 35 2031 465 YES
Strychnos spinosa 198 35 2017 481 YES
Acacia sieberiana 194 35 1970 450 YES
Ilex mitis 200 34 2031 418 YES
Combretum molle 198 34 2011 449 YES
Annona senegalensis 194 34 1969 456 YES
Ximenia americana 193 34 1970 465 YES
Milicia excelsa 192 34 1931 416 YES
Dodonaea viscosa 200 33 2031 383 YES
Celtis africana 199 33 2021 453 YES
Sesbania sesban 195 33 1981 446 YES
Cajanus cajan 192 33 1951 436 YES
Acacia tortilis 200 32 2038 462 YES

continued on next page

https://spatialreference.org/ref/esri/53009/
https://doi.org/10.1111/2041-210X.13107
https://spatialreference.org/ref/epsg/4326/
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Species Occurrence Background SDM
Ziziphus mucronata 200 32 2031 384 YES
Senna didymobotrya 198 32 2010 430 YES
Diospyros mespiliformis 196 32 1991 446 YES
Bridelia micrantha 192 32 1951 440 YES
Vernonia amygdalina 184 32 1871 424 YES
Albizia lebbeck 200 31 2031 431 YES
Ceiba pentandra 200 31 2023 400 YES
Sarcocephalus latifolius 199 31 2020 444 YES
Sclerocarya birrea 196 30 1990 429 YES
Leucaena leucocephala 192 30 1951 405 YES
Salvadora persica 167 30 1700 388 YES
Commiphora africana 200 29 2030 463 YES
Tamarindus indica 191 29 1941 383 YES
Shirakiopsis elliptica 136 29 1391 307 YES
Olea europaea 200 28 2037 484 YES
Bauhinia thonningii 194 28 1971 465 YES
Grevillea robusta 192 28 1950 399 YES
Combretum aculeatum 170 28 1730 408 YES
Nuxia congesta 168 28 1711 358 YES
Olea capensis 146 28 1491 306 YES
Saba comorensis 143 28 1461 285 YES
Azadirachta indica 200 27 2031 443 YES
Delonix regia 200 27 2031 479 YES
Melia azedarach 200 27 2037 464 YES
Dichrostachys cinerea 198 27 2011 474 YES
Capparis tomentosa 168 27 1711 362 YES
Acacia seyal 195 26 1981 479 YES
Securidaca longipedunculata 173 26 1761 409 YES
Faidherbia albida 167 26 1701 363 YES
Dalbergia melanoxylon 144 26 1473 332 YES
Jacaranda mimosifolia 200 25 2030 437 YES
Stereospermum kunthianum 200 25 2031 376 YES
Trichilia emetica 197 25 1997 376 YES
Euphorbia tirucalli 190 25 1946 430 YES
Rhamnus prinoides 186 25 1891 372 YES
Steganotaenia araliacea 122 25 1250 243 YES
Acacia senegal 200 24 2030 395 YES
Acacia polyacantha 192 24 1951 396 YES
Dovyalis caffra 146 24 1490 273 YES
Flacourtia indica 200 23 2031 460 YES
Vitellaria paradoxa 200 23 2005 442 YES
Grewia villosa 103 23 1058 240 YES
Strychnos innocua 132 22 1349 295 YES

Table 9. Continued

continued on next page
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Species Occurrence Background SDM
Erythrina abyssinica 115 22 1181 270 YES
Anogeissus leiocarpa 197 21 1991 451 YES
Prunus africana 136 21 1391 294 YES
Searsia natalensis 127 21 1301 293 YES
Ziziphus jujuba 127 21 1299 274 YES
Garcinia livingstonei 118 21 1209 247 YES
Berchemia discolor 102 21 1047 192 YES
Antiaris toxicaria 158 20 1599 379 YES
Spathodea campanulata 126 20 1282 284 YES
Mangifera indica 115 20 1177 261 YES
Acacia saligna 100 20 1028 211 YES
Moringa oleifera 98 18 1008 207 YES
Afrocarpus falcatus 77 16 797 161 YES
Cordia africana 94 15 971 195 YES
Lawsonia inermis 90 14 945 201 YES
Juniperus procera 86 14 887 208 YES
Croton macrostachyus 86 13 891 181 YES
Gardenia volkensii 71 13 724 141 YES
Hyphaene thebaica 68 13 707 152 YES
Oxytenanthera abyssinica 92 12 944 229 YES
Acacia abyssinica 70 12 730 155 YES
Vangueria madagascariensis 66 12 690 154 YES
Coffea arabica 53 12 558 126 YES
Sesbania bispinosa 88 11 886 189 YES
Vepris nobilis 79 11 820 190 YES
Markhamia lutea 69 11 701 154 YES
Polyscias fulva 68 11 710 153 YES
Strychnos henningsii 64 11 647 124 YES
Pterolobium stellatum 63 11 660 151 YES
Pinus patula 59 11 612 144 YES
Catha edulis 57 11 600 110 YES
Carica papaya 54 11 562 112 YES
Persea americana 50 11 524 119 YES
Terminalia brownii 50 11 530 106 YES
Ziziphus spina-christi 50 11 520 107 YES
Acacia melanoxylon 54 10 574 103 YES
Schinus molle 52 10 553 122 YES
Grewia damine 50 10 530 127 YES
Hagenia abyssinica 49 9 520 104 YES
Eucalyptus camaldulensis 48 8 481 91 YES
Boswellia neglecta 49 7 517 94 YES
Pouteria adolfi-friedericii 49 7 520 112 YES
Acacia lahai 48 7 507 103 YES

Table 9. Continued

continued on next page



30

Species Occurrence Background SDM
Casuarina equisetifolia 37 7 421 86 YES
Warburgia ugandensis 34 7 420 83 YES
Yushania alpina 33 7 431 89 YES
Dovyalis abyssinica 49 6 520 89 YES
Acacia decurrens 28 6 403 76 YES
Albizia schimperiana 49 5 520 77 YES
Dombeya torrida 49 5 520 97 YES
Schefflera abyssinica 44 5 471 81 YES
Boswellia papyrifera 43 5 452 84 YES
Dobera glabra 21 5 427 79 YES
Cupressus sempervirens 20 5 407 66 YES
Boswellia rivae 18 2 418 73 NO
Casuarina cunninghamiana 15 2 422 76 NO
Erythrina brucei 33 1 420 49 NO
Cupressus lusitanica 14 1 420 72 NO
Eucalyptus globulus 11 1 424 54 NO
Ficus carica 11 1 427 58 NO
Callistemon citrinus 10 1 410 59 NO
Eucalyptus grandis 9 1 403 74 NO
Corymbia citriodora 7 1 403 73 NO
Albizia grandibracteata 53 0 557 111 NO
Millettia ferruginea 46 0 480 53 NO
Commiphora myrrha 20 0 420 48 NO
Tamarix aphylla 19 0 424 89 NO
Maerua aethiopica 10 0 427 95 NO
Citrus sinensis 8 0 425 64 NO
Commiphora guidottii 8 0 408 81 NO
Boswellia microphylla 7 0 411 72 NO
Boswellia pirottae 6 0 420 76 NO
Calliandra calothyrsus 5 0 411 86 NO
Moringa stenopetala 5 0 409 67 NO
Boswellia ogadensis 4 0 268 25 NO
Eucalyptus saligna 4 0 407 75 NO
Eucalyptus viminalis 4 0 400 59 NO
Cordeauxia edulis 3 0 203 29 NO
Cytisus proliferus 3 0 391 71 NO
Malus domestica 0 NO

Table 9. Continued



In this section, we explain how we calibrated the species distribution models and generated the 
suitability maps. 

Species distribution models were calibrated via the functions BiodiversityR::ensemble.calibrate.
weights and BiodiversityR::ensemble.calibrate.models via procedures of ensemble suitability 
modelling described by Kindt (2018b). Similar procedures were used in other species distribution 
studies with BiodiversityR, such as those by Ranjitkar et al. (2014a,b), de Sousa et al. (2019), Fremout et 
al. (2020) and van Zonneveld et al. (2020). The ensemble procedures of BiodiversityR calculate habitat 
suitability as a weighted average of predictions from different algorithms,17 an approach that may 
significantly increase model performance (Marmion et al. 2009, Hao et al. 2019).

Table 10 provides critical argument settings for the BiodiversityR::ensemble.calibrate.weights function 
that performed the fourfold cross-validation tests (see previous section and Box 1 in Valavi et al. 2018) 
to calculate the weights18 for each of the considered algorithms in contributing to the ensemble 
suitability. 

Model evaluation statistics were calculated via BiodiversityR::ensemble.evaluate and included the 
Area Under the receiver-operator Curve (AUC, e.g. Hijmans 2012, Castellanos et al. 2019, Grimmet et 
al. 2020), the Symmetric Extremal Dependence Index (SEDI, Wunderlich et al. 2019) and the True Skill 
Statistic19 (TSS, Allouche et al. 2006). Although the use of AUC has been criticized (e.g., by Jimenez-
Valverde 2011), it provides a valid measure of relative model performance for the same species and 
study area (Wisz et al. 2008), and therefore it is also valid for comparing the performance of a consensus 
model and the individual performance of contributing algorithms (Kindt 2018b). 

Table 10. Argument settings for the BiodiversityR::ensemble.calibrate.weights function.

Argument Setting Comment
ENSEMBLE.tune TRUE Determines the optimal combination of options from ENSEMBLE.

exponent and ENSEMBLE.min
ENSEMBLE.min c(0.55, 0.60, 0.65) Minimum AUC for an algorithm to be included in the ensemble. See 

Kindt (2018b) for details.
ENSEMBLE.
exponent

c(1, 2, 3) Exponent applied to algorithm AUC values to convert these into 
weights. See Kindt (2018b) for details.

MAXENT 0 Do not fit a maximum entropy model via dismo::maxent. Not fitted as 
maximum entropy model obtained via MAXNET.

MAXNET 1 Fit a maximum entropy model via maxnet::maxnet (Philips et al. 2017)

17  These methods have also been described as ‘consensus methods’, where a relevant combination of several model 
outputs results in a prediction that has higher accuracy than those of individual model outputs; similar consensus methods 
are used in meteorology, climatology and economics (Marmion 2009). For an online example, check https://rspatial.org/
raster/sdm/6_sdm_methods.html#combining-model-predictions.
18  See Kindt (2018b) for how weights are calculated from AUC values. Weights can be zero so that results from algorithms 
with weight zero are not included in the calculations. When only one weight is larger than zero, the ensemble predictions 
are equal to those of the selected (best) model. When it is not known a priori which algorithm has the best predictions for a 
particular species or study region, selection of the single best algorithm still is a method of ensemble suitability modelling.
19  In this working paper, we do not report results for the TSS, as Wunderlich et al. (2019) demonstrated that SEDI has 
superior qualities as an evaluation metric.

10 Calibration of species distribution models  
 and generation of suitability maps
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Argument Setting Comment
MAXLIKE 1 Fit a maximum likelihood model via maxlike::maxlike (see Kindt 2018b 

for citation)
GBM 1 Fit a boosted regression trees model via gbm::gbm (see Kindt 2018b 

for citation)
GBMSTEP 1 Fit a stepwise boosted regression trees model via dismo::gbm.step 

(see Kindt 2018b for citation)
RF 1 Fit a random forest model via randomForest::randomForest (see Kindt 

2018b for citation)
CF 0 Do not fit a random forest model via party::cforest. Not fitted as 

calibration and projections consume a lot of time.
GLM 1 Fit a generalized linear model via stats::glm (see Kindt 2018b for citation)
GLMSTEP 1 Fit a stepwise generalized linear model via MASS::stepAIC (see Kindt 

2018b for citation)
GAM 1 Fit a generalized additive model via gam::gam (see Kindt 2018b for 

citation)
GAMSTEP 1 Fit a stepwise generalized additive model via gam::step.Gam (see 

Kindt 2018b for citation)
MGCV 1 Fit a generalized additive model via mgcv::gam (see Kindt 2018b for 

citation)
MGCFIX 0 Do not fit a generalized additive model with fixed d.f. regression 

splines
EARTH 1 Fit a multivariate adaptive regression spline model via earth::earth 

(see Kindt 2018b for citation)
RPART 1 Fit a recursive partitioning and regression tree model via rpart::rpart 

(see Kindt 2018b for citation)
NNET 1 Fit an artificial neural network via nnet::nnet (see Kindt 2018b for 

citation)
FDA 1 Fit a flexible discriminant analysis model via mda::fda (see Kindt 2018b 

for citation)
SVM 1 Fit a support vector machine model via kernlab::ksvm (see Kindt 

2018b for citation)
SVME 1 Fit a support vector machine model via stats::glm (see Kindt 2018b for 

citation)
GLMNET 0 Do not fit a generalized linear model with lasso or elasticnet 

regularization. Not fitted as calibration and projections consume a lot 
of time.

BIOCLIM.0 0 Do not fit the original BIOCLIM algorithm. Not fitted as the alternative 
implementation was done via BIOCLIM.

BIOCLIM 1 Fit a BIOCLIM model via dismo::bioclim (see Kindt 2018b for citation)
DOMAIN 0 Do not fit a model via the DOMAIN algorithm. Not fitted as calibration 

and projections consume a lot of time, and as this algorithm typically 
does not perform as well as other algorithms (Wisz et al. 2008b)

MAHAL 0 Do not fit models via the Mahalanobis algorithm. Not fitted as 
calibrations and projections consume a lot of time.

MAHAL01 0 Do not fit models via the Mahalanobis algorithm. Not fitted as 
calibrations and projections consume a lot of time.

PROBIT TRUE Transform suitability predictions from each algorithm to probabilities via a 
probit transformation. See Kindt (2018b) for details.
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As some machine-learning algorithms use randomization approaches, we carried out model calibration 
procedures 5 times20 for each species. Based on their average AUC in the fourfold cross-validations 
(AUC-mean), from the 5 calibrated ensemble models for each species we selected the ensemble model 
with the highest AUC-mean (see Table 11) to generate habitat suitability maps for the baseline and 
future climates (GCMs × scenarios) via BiodiversityR::ensemble.raster. 

Model performance statistics shown in Table 11 correspond to the selected ensemble model. In 
the majority of cases (102 species when comparing AUC-mean statistics), the ensemble model 
outperformed individual algorithms. In cases where an individual algorithm had higher AUC-mean 
than the ensemble model, GLMSTEP ranked first for 7 species, and MAXNET and GAMSTEP ranked first 
for 6 species each. There were only 4 cases where the ensemble model ranked third and only 2 cases 
where it ranked fourth, but for all these cases the final model had an AUC-final value above 90%. Only 
for Catha edulis was the AUC-mean difference between the best ranking algorithm and the ensemble 
model larger than 2%.

Elsewhere, prediction accuracies with AUC-mean of more than 90% are classed as excellent,21 from 
90% to 80% as good, from 80% to 70% as fair, from 70% to 60% as poor,22 and below 60% as a fail. On 
this basis, in the current analysis no species failed for cross-validation, and the model was considered 
to be poor for 5 species only: Grewia damine, Ziziphus mucronata, Adansonia digitata, Combretum 
aculeatum and Hyphaene thebaica (in descending order of AUC-mean value; Table 11). Taking the same 
classification thresholds, the minimum AUC in a fold (AUC-min) was classified as a fail for 3 species, 
Ziziphus mucronata, Commiphora africana and Garcinia livingstonei; and as poor for 39 species, ranging 
from 69.9% for Anogeissus leiocarpa to 60.7% for Entada abyssinica. The prediction accuracies for the 
final models that were fitted with the full set of occurrence and background locations were all classed 
as good or excellent, with Commiphora africana ranked lowest with a value of 82% for AUC-final.

Table 11. Evaluation statistics for the selected ensemble models used to generate species distribution maps. 
AUC-mean: the mean AUC percentage value over the fourfold cross-validations, used to order entries in the 
table; AUC-min: the minimum AUC over the fourfold cross-validations; Rank: the rank of the ensemble model, 
based on AUC-mean, when compared with individual algorithms; AUC-final: the AUC percentage value for the 
model calibrated with all observations; SEDI-final: the SEDI percentage value for the model calibrated with 
all observations. 

Species AUC-mean AUC-min Rank AUC-final SEDI-final
Yushania alpina 95.901% 85.768% 1 99.543% 97.954%
Pouteria adolfi-friedericii 93.913% 86.391% 4 99.059% 97.640%
Ilex mitis 92.857% 90.509% 3 96.573% 91.718%
Dombeya torrida 92.510% 90.309% 1 98.528% 97.192%
Schefflera abyssinica 92.095% 83.940% 1 98.113% 95.741%
Juniperus procera 92.081% 86.903% 1 96.259% 94.616%
Hagenia abyssinica 91.999% 87.574% 1 99.031% 95.956%
Rhamnus prinoides 91.331% 86.473% 1 95.058% 91.356%
Prunus africana 91.082% 89.102% 1 94.260% 92.855%
Acacia saligna 90.125% 88.671% 1 97.313% 93.584%
Acacia decurrens 89.988% 81.699% 1 99.369% 97.531%

20  Including the fourfold cross-validation runs, this means that for each species 20 cross-validation models were 
calibrated for each algorithm. These were followed by 5 final model calibrations (‘ensemble models’) with the full set of 
occurrence and background observations. From these final 5 ensemble models, we selected the ensemble model with the 
highest AUC-mean.
21  These thresholds are taken from an Operating Manual for BIOMOD from 2009. For SEDI, we used the same thresholds.
22  Hijmans (2012) mentions that an AUC threshold of 0.7 is often used to identify “good” models.

continued on next page
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Species AUC-mean AUC-min Rank AUC-final SEDI-final
Acacia melanoxylon 89.608% 80.874% 2 97.677% 93.828%
Nuxia congesta 89.510% 86.560% 1 94.491% 87.248%
Dodonaea viscosa 89.246% 86.128% 1 94.131% 86.681%
Dovyalis abyssinica 89.181% 85.569% 1 96.762% 95.035%
Olea europaea 88.828% 80.846% 1 93.414% 92.094%
Olea capensis 88.219% 85.051% 2 96.167% 87.815%
Coffea arabica 87.919% 83.816% 1 96.789% 90.656%
Polyscias fulva 87.536% 84.789% 1 98.293% 94.082%
Acacia abyssinica 87.210% 82.698% 2 94.683% 92.284%
Albizia gummifera 86.385% 85.421% 1 91.953% 84.699%
Warburgia ugandensis 85.322% 78.795% 1 98.866% 95.991%
Afrocarpus falcatus 85.313% 78.093% 1 95.511% 90.277%
Acacia lahai 85.110% 81.884% 2 96.857% 94.026%
Celtis africana 85.104% 80.770% 1 90.857% 86.438%
Boswellia papyrifera 84.604% 73.038% 1 97.235% 92.681%
Albizia schimperiana 84.591% 81.515% 1 97.233% 95.041%
Shirakiopsis elliptica 84.376% 82.647% 1 91.114% 87.644%
Senna didymobotrya 84.366% 82.084% 1 91.846% 86.626%
Cordia africana 84.346% 78.087% 2 92.232% 86.974%
Ekebergia capensis 84.342% 78.910% 1 89.230% 86.537%
Markhamia lutea 84.068% 81.110% 1 95.326% 92.678%
Casuarina equisetifolia 83.606% 77.713% 1 97.991% 94.368%
Catha edulis 83.596% 76.925% 4 95.474% 90.279%
Croton macrostachyus 83.521% 78.485% 3 95.406% 92.372%
Terminalia brownii 83.453% 71.437% 1 97.332% 93.331%
Pterolobium stellatum 83.296% 79.335% 1 94.382% 93.471%
Vitellaria paradoxa 82.736% 77.058% 1 92.716% 89.087%
Ceiba pentandra 82.426% 75.212% 1 89.771% 81.954%
Searsia natalensis 82.326% 75.446% 1 91.664% 88.272%
Parkinsonia aculeata 82.301% 74.034% 1 91.122% 86.063%
Cupressus sempervirens 82.225% 62.692% 2 96.878% 95.378%
Grevillea robusta 82.222% 71.482% 1 92.301% 84.533%
Dobera glabra 82.001% 73.400% 1 97.502% 93.795%
Ficus sur 81.928% 77.965% 1 88.543% 83.704%
Schinus molle 81.788% 72.854% 1 96.346% 90.864%
Bridelia micrantha 81.575% 75.626% 1 88.709% 83.693%
Ziziphus spina-christi 81.575% 77.995% 1 94.019% 88.497%
Azadirachta indica 81.356% 78.672% 2 90.753% 77.444%
Milicia excelsa 81.268% 77.780% 2 90.106% 86.705%
Spathodea campanulata 81.263% 76.517% 1 89.937% 84.240%
Combretum molle 81.069% 76.017% 1 87.948% 86.203%
Vepris nobilis 81.062% 70.567% 1 92.877% 88.928%
Sarcocephalus latifolius 80.981% 75.278% 1 88.552% 87.735%

Table 11. Continued
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Species AUC-mean AUC-min Rank AUC-final SEDI-final
Salvadora persica 80.726% 75.034% 1 90.242% 80.832%
Phoenix reclinata 80.726% 75.641% 1 88.569% 84.701%
Euphorbia tirucalli 80.634% 76.096% 3 90.420% 88.065%
Syzygium guineense 80.375% 79.141% 1 89.865% 85.842%
Strychnos henningsii 80.155% 75.509% 2 96.839% 83.111%
Delonix regia 79.994% 76.179% 2 90.768% 84.178%
Dovyalis caffra 79.993% 74.989% 3 92.752% 86.494%
Borassus aethiopum 79.810% 74.470% 2 93.462% 81.520%
Gardenia volkensii 79.805% 66.162% 1 93.794% 85.139%
Sclerocarya birrea 79.586% 75.107% 2 87.626% 78.063%
Melia azedarach 79.203% 74.282% 1 88.811% 81.344%
Jacaranda mimosifolia 79.123% 72.312% 1 91.934% 86.541%
Calotropis procera 78.355% 66.753% 1 90.908% 81.285%
Erythrina abyssinica 78.274% 73.474% 1 89.941% 86.579%
Annona senegalensis 77.637% 65.726% 1 89.218% 77.782%
Capparis tomentosa 77.585% 66.237% 1 87.770% 82.118%
Vangueria madagascariensis 77.429% 71.948% 2 95.362% 88.838%
Pinus patula 77.319% 65.759% 2 93.411% 85.310%
Strychnos innocua 77.300% 72.289% 1 89.961% 80.308%
Dichrostachys cinerea 77.277% 72.002% 1 89.001% 78.842%
Tamarindus indica 77.271% 71.814% 1 88.624% 82.023%
Saba comorensis 77.266% 75.021% 1 88.766% 87.223%
Antiaris toxicaria 77.051% 74.604% 1 94.009% 87.527%
Strychnos spinosa 76.647% 72.860% 2 88.385% 83.960%
Cajanus cajan 76.361% 68.623% 1 84.837% 77.031%
Kigelia africana 76.019% 73.205% 1 85.195% 75.626%
Diospyros mespiliformis 76.008% 70.081% 1 87.415% 85.057%
Oxytenanthera abyssinica 75.914% 74.371% 1 88.853% 82.636%
Eucalyptus camaldulensis 75.879% 73.138% 1 94.932% 86.851%
Ziziphus jujuba 75.743% 71.667% 1 88.270% 77.257%
Acacia nilotica 75.738% 73.213% 1 89.651% 78.765%
Persea americana 75.722% 66.590% 2 92.958% 91.337%
Steganotaenia araliacea 75.625% 71.318% 1 88.455% 82.837%
Anogeissus leiocarpa 75.513% 69.920% 1 89.418% 85.274%
Acacia seyal 75.450% 72.258% 1 91.279% 75.608%
Berchemia discolor 75.377% 61.864% 1 96.005% 89.038%
Trichilia emetica 74.960% 73.501% 2 89.915% 83.142%
Vitex doniana 74.877% 69.149% 1 84.575% 83.169%
Securidaca longipedunculata 74.807% 68.074% 1 87.983% 88.187%
Boswellia neglecta 74.612% 65.565% 1 90.424% 85.909%
Flueggea virosa 74.566% 67.150% 1 86.108% 76.209%
Leucaena leucocephala 74.412% 69.705% 1 88.702% 81.157%
Balanites aegyptiaca 74.391% 72.645% 1 87.256% 77.289%
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Species AUC-mean AUC-min Rank AUC-final SEDI-final
Vernonia amygdalina 74.314% 67.829% 1 85.068% 83.952%
Flacourtia indica 74.178% 65.577% 1 87.194% 81.934%
Acacia polyacantha 74.073% 70.104% 1 83.869% 84.585%
Ficus sycomorus 73.573% 67.038% 1 84.840% 81.286%
Carica papaya 73.567% 65.761% 1 92.372% 86.681%
Sesbania sesban 73.491% 61.065% 1 84.178% 70.209%
Bauhinia thonningii 73.454% 72.154% 1 85.054% 81.677%
Dalbergia melanoxylon 73.308% 65.872% 1 88.100% 79.298%
Sesbania bispinosa 72.868% 66.814% 1 88.325% 78.164%
Lawsonia inermis 72.671% 70.150% 1 89.504% 83.966%
Combretum collinum 72.422% 66.586% 2 83.553% 84.150%
Entada abyssinica 72.398% 60.702% 1 87.685% 82.912%
Faidherbia albida 72.201% 64.193% 1 86.193% 81.070%
Acacia tortilis 72.001% 63.421% 1 85.184% 76.900%
Grewia villosa 71.922% 67.260% 1 88.550% 79.386%
Acacia sieberiana 71.715% 68.201% 1 91.491% 79.332%
Acacia senegal 71.674% 66.404% 1 82.811% 81.442%
Ximenia americana 71.606% 64.783% 1 87.034% 79.593%
Stereospermum kunthianum 71.486% 61.479% 1 88.607% 77.052%
Albizia lebbeck 70.977% 66.627% 1 87.601% 81.424%
Garcinia livingstonei 70.827% 57.391% 1 86.723% 80.516%
Jatropha curcas 70.718% 65.446% 1 88.781% 76.836%
Moringa oleifera 70.686% 61.770% 2 86.808% 77.122%
Mangifera indica 70.423% 62.064% 1 92.769% 79.963%
Commiphora africana 70.205% 58.099% 1 82.058% 79.256%
Grewia damine 69.729% 61.908% 1 90.374% 83.454%
Ziziphus mucronata 69.461% 58.630% 1 88.712% 79.126%
Adansonia digitata 69.411% 66.058% 1 90.830% 75.315%
Combretum aculeatum 68.815% 67.122% 1 92.950% 66.390%
Hyphaene thebaica 67.989% 62.291% 1 84.893% 77.200%

The BiodiversityR::ensemble.raster function generates three types of habitat suitability maps (Kindt 
2018b) that are all included in the atlas:
• Predicted presence maps depict areas where a species is predicted to be suitable (present) or not 

suitable (absent) as predicted by a particular ensemble model.
• Predicted suitability maps depict the probability that a species is suitable across the mapped area 

as predicted by a particular ensemble model.
• Count suitability maps show how many of the algorithms that are used by a particular ensemble 

model predict that a species is suitable (consensus map).

Predicted presence maps are derived from predicted suitability maps by applying a suitability threshold 
value that discriminates areas where a species is predicted to be present (above the threshold) or 
absent (below the threshold). Various approaches exist to calculate the threshold; based on these 
we applied a threshold that maximizes the sum of sensitivity and specificity, as recommended by Liu 
et al. (2013, 2016). This threshold has been widely used by a range of authors in species suitability 

Table 11. Continued
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investigations (e.g., de Sousa et al. 2019, Grimmet et al. 2020, Ramirez-Villegas et al. 2020, Sillero et al. 
2021) and is the default argument setting for functions BiodiversityR::ensemble.calibrate.weights and 
BiodiversityR::ensemble.calibrate.models. 

For the predicted suitability maps, the species absence-presence threshold was used in combination 
with maximum suitability values to classify species suitability maps to four quartile ranges above the 
threshold using function raster::quantile with argument probs=c(0, 0.25, 0.5, 0.75, 1.0). Below the 
threshold and with minimum suitability values, we calculated a 90% percentile value to show some of 
the areas (those of highest suitability) where the species was predicted not to be suitable.

The BiodiversityR::ensemble.raster function also generates count suitability maps that show the 
number of algorithms that predict species presence (Kindt 2018b). These types of maps can be used 
to investigate consensus among the different algorithms used to calculate habitat suitability by the 
ensemble model.

Water bodies were masked out in the generation of maps by applying the inland and ocean water 
layer of Lamarche et al. (2017). We reprojected (‘warped’) this layer to the resolution of our predictor 
variables and the suitability maps in QGIS, using a quantile method whereby a raster was classed as a 
water body when at least 25% was covered by water.

https://doi.org/10.1038/s41598-019-45491-7
https://doi.org/10.1016/j.ecolmodel.2020.109194
https://doi.org/10.1111/ddi.13046
https://www.sciencedirect.com/science/article/abs/pii/S0304380021002301
https://doi.org/10.1016/j.envsoft.2017.11.009
https://doi.org/10.3390/rs9010036


In this section, we explain how we separately mapped areas with novel environmental conditions. 
An argument can be made that species should be predicted not to be suitable (should be predicted 
absent) in areas with novel environmental conditions (conditions outside the observed environmental 
range of the species).

Identifying areas with novel conditions is conceptually related to the multivariate environmental 
similarity surface (MESS) methodology developed by Elith et al. (2010), but for the atlas we use a 
binary classification of novel versus not-novel environments, where these had negative MESS values 
and values within the observed range, respectively.

The observed environmental ranges of each tree species for our 43 environmental variables were 
obtained via the BiodiversityR::ensemble.novel.object function. In two separate exercises, one using 
our predictor variables and one using the full set of 43 environmental variables, we created maps for 
each species that showed areas where there are novel conditions23 within the predicted habitat. 

The maps for novel conditions allow discrimination between novel conditions for variables not used 
for calibrating the model (‘Extrapolated #1’); and novel conditions for variables that were used for 
calibrating the model (‘Extrapolated #2’). 

23  The phenomenon whereby the ensemble suitability model predicts that a species is suitable for novel environmental 
conditions can be described as ‘extrapolation’, the opposite of ‘interpolation’ (e.g.,  https://www.dictionary.com/e/
interpolation-vs-extrapolation/). 

11 Discrimination of areas with novel    
 environmental conditions 

https://doi.org/10.1111/j.2041-210X.2010.00036.x
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12 Generation of habitat change maps

In this section, we explain how we generated habitat change maps in the online atlas.

Habitat change maps were created by comparing the predicted presence of a species in baseline climate 
with the predicted presence in future climates, projected for each of the nine GCMs. Separate maps 
were created for our two chosen climate change scenarios, and for when areas with novel conditions 
were excluded (masked out, see Section 11) or included.

Classifications of habitat change were based on the likelihood scale developed for the 5th Assessment 
Report of the IPCC by Mastrandea et al. (2011). With this scale, 66% to 90% probability is classified as 
‘likely’ and 90% to 100% probability as ‘very likely’ (Table 12). The same scale was used to investigate 
habitat change in a climate change atlas for Central America that some of the current authors 
contributed to (de Sousa et al. 2019).

Table 12. Rules to classify habitat change.

Baseline GCMs Habitat change Comment
Suitable 0 Lost Very likely as > 90% of GCMs predict habitat loss
Suitable 1 - 3 Lost Likely as ≥ 66% of GCMs predict habitat loss
Suitable 4 - 5 Uncertain
Suitable 6 - 9 Kept Likely as ≥ 66% of GCMs predict habitat kept
Not suitable 6 - 9 New Likely as ≥ 66% of GCMs predict new habitat

https://doi.org/10.1007/s10584-011-0178-6
https://doi.org/10.1038/s41598-019-45491-7


In this section, we explain how we generated a posteriori distance constraining hulls. For each species, 
the hulls are used to show areas in the modelled distribution (outside the hull) where the conditions 
for the species are predicted to be suitable, but that are distant from known presence observations of 
the species. Areas outside hulls are expected not to be reachable by natural dispersal processes and to 
be outside the natural range of a species by consequence.

Maps in the online atlas include a convex hull that was created via the BiodiversityR::ensemble.chull.
create function. All spatially thinned occurrence observations for a species were used to create this hull 
(Figures 7 and 8). The argument setting of buffer.maxmins = TRUE selected the Buffered Minimum Convex 
Polygon (BMCP) as an a posteriori distance constraining method, as described by Mendes et al. (2020). 

Mendes et al. (2020) investigated various methods of adding distance constraints to reduce 
overprediction in species distribution modelling. These methods include dispersal constraints that 
essentially exclude areas unlikely to have been colonized by a species. The BMCP algorithm was among 
the a posteriori methods that reduced overprediction without incurring high omission errors. For each 
species, the buffer width for BMCP corresponds to the maximum calculated from the distances to the 
nearest neighbour for each occurrence location.

13 Convex hulls for an a posteriori distance  
 constraining method

Figure 7. Convex hull for a hypothetical tree species with a relatively narrow range across Africa. The arrowed 
line shows the buffer width distance and the two locations used to calculate this distance. Red circles show the 
full set of spatially thinned occurrence observations for the species.

https://doi.org/10.1016/j.ecolmodel.2020.109180
https://doi.org/10.1016/j.ecolmodel.2020.109180
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Figure 8. Convex hull for a hypothetical tree species with a wide range across Africa. The arrowed line shows 
the buffer width distance and the two locations used to calculate this distance. Red circles show the full set of 
spatially thinned occurrence observations for the species.

Convex hulls were added to our maps as a visual aid for users to identify areas where it is unlikely that 
species occur naturally. Note that we have not used convex hulls as masks for the area calculations 
given in the atlas. The area statistics shown, calculated after reprojecting the rasters to the equal-area 
Mollweide projection (https://spatialreference.org/ref/esri/53009/), include areas outside the hulls.

https://spatialreference.org/ref/esri/53009/


In this section, we explain how the main atlas maps were created.

The base (continental) map used throughout the atlas was obtained from https://maps.wikimedia.org 
via the basemapR package (version 0.1.0; Bailey 2020; accessed 23 February 2021).

North arrows and the scale bar were added using ggspatial::annotation_north_arrow and 
ggspatial::annotation_scale functions, respectively (ggspatial version 1.1.5; Dunnington 2021), to 
maps created via the ggplot2 package (version 3.3.3; Wickham 2016).

For the species presence maps in the baseline climate, spatially thinned occurrence observations from 
only the RAINBIO database (Dauby et al. 2016), one of the databases used to compile occurrence 
observations (see Section 5), were added. Spatial thinning was done via BiodiversityR::ensemble.
spatial.thin for occurrences closer than 100 km. This was carried out for graphical reasons, to avoid 
the overlap of occurrence symbols and increase the visibility of the habitat suitability layer.

Our reason to select RAINBIO occurrences only for visual purposes was based on the numerous quality 
checks, including manual checks by African flora experts, undertaken while georeferencing these 
occurrences. The inclusion of occurrences from RAINBIO in the maps therefore provides users with 
a reliable check for the modelled distributions. However, as RAINBIO is geographically focused on 
mainland Africa, and especially to areas south of the Sahel and north of southern Africa, the distribution 
of occurrences from RAINBIO should not be used to inspect the reliability of the models outside the 
area that is thereby defined.24

The spatially thinned RAINBIO locations served as inputs for the creation of a concave hull (different 
from the convex a posteriori distance constraining hulls described in Section 13) via the ggforce::geom_
mark_hull function (version 0.3.2; Pedersen 2020). Default parameter settings were used, except for 
concavity = 1.5. These concave hulls were added to maps to assist the user in locating the spatially 
thinned observations from the RAINBIO database.

24  Inset maps in the atlas from Plants of the World Online help counter this problem of limited geographic range 
(see Section 15 of this working paper).

14 Base map and map annotations used in  
 the atlas

https://maps.wikimedia.org
https://github.com/Chrisjb/basemapR
https://cran.r-project.org/package=ggspatial
https://link.springer.com/book/10.1007/978-0-387-98141-3
https://doi.org/10.3897/phytokeys.74.9723
https://cran.r-project.org/package=ggforce


In this section, we explain how the inset atlas maps were created.

For each of the tree species mapped in the atlas, we compiled country distributions from Plants of 
the World Online (POWO; http://powo.science.kew.org/; accessed 4 September 2021) using the 
classifications of ‘Native’, ‘Introduced’ and ‘Doubtful’. Countries that were not listed by POWO for a 
species were classified as ‘Absent’.

An inset map was created with the Natural Earth (NE) 1:10 million Admin0 shapefile (version 4.1.0, 
downloaded May 2018 via https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-
admin-0-details/). Insets were only shown for baseline climate maps, to avoid any misunderstanding 
that POWO would provide future climate projections.

To match country names from POWO with country names in the NE shapefile, a lookup table was 
created with past and current names where these were different for countries (e.g., Democratic 
Republic of the Congo versus Zaïre; and Eswatini versus Swaziland). Whereas POWO mapped the Cape 
Provinces, Free State, KwaZulu-Natal and Northern Provinces separately for South Africa, the inset 
maps show information aggregated for South Africa. Other areas that were mapped separately by 
POWO were Cabinda (mapped in the inset map as Angola), the Gulf of Guinea Islands (mapped in the 
inset map as Equatorial Guinea) and the Caprivi Strip (mapped in the inset map as Namibia). As POWO 
does not separately list the new countries of South Sudan and Somaliland, the data for these nations 
were contained within the POWO data for Sudan and Somalia, respectively. 

Similar to the visualization of full convex hulls (see Section 13), and of the occurrence locations as well 
as the concave hulls derived from RAINBIO (see Section 14), the inset maps can aid users to visually 
check the performance of suitability models.

15 Inset maps showing country distribution  
 of Plants of the World Online

http://powo.science.kew.org/
https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-details/
https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-details/
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Appendix 1. Synonyms and authorities for species names

Current names and synonyms were checked via World Flora Online (WFO; May 2019 version of the 
taxonomic backbone; http://www.worldfloraonline.org/) via the WorldFlora package (version 1.9; Kindt 
2020). We also checked for current names in the World Checklist of Vascular Plants (WCVP; version 6 
of September 2021; https://wcvp.science.kew.org/; Govaerts et al. 2021) via a modified script from 
https://rpubs.com/Roeland-KINDT/812716 for using WorldFlora::WFO.match. 

Where the same current name was retrieved for the WFO and the WCVP, the identification number for 
the record in WCVP was included in Table A1.1. Table A1.2 lists the species where the WCVP retrieved an 
alternative current name.25

When compiling occurrence data (Section 5), searches included synonyms listed in Table A1.3. 

As World Flora Online has been updated regularly, we list changes in accepted names in Table A1.4 
using the most recent downloadable version of the WFO taxonomic backbone. In the more recent 
version of WFO, Ziziphus mauritiana (wfo-0000430322), a species selected as a ‘Top 25’ one (Table 1), 
a is no longer treated as a synonym for Ziziphus jujuba. 

Table A1.1. Authorship and ID for current species names in World Flora Online (May 2019) obtained via the 
WorldFlora package (Kindt 2020). The WCVP.ID shows the ID from the World Checklist of Vascular Plants if the 
same current name was retrieved as for WFO.

Species Authorship WFO.ID WCVP.ID
Acacia abyssinica Benth. wfo-0000187479
Acacia decurrens Willd. wfo-0000192434 470138-1
Acacia lahai Benth. wfo-0000201927
Acacia melanoxylon R.Br. wfo-0000204086 470873-1
Acacia nilotica (L.) Delile wfo-0000205536
Acacia polyacantha Willd. wfo-0000209605
Acacia saligna (Labill.) Wendl. wfo-0000210801 471383-1
Acacia senegal (L.) Willd. wfo-0000210855
Acacia seyal Delile wfo-0000210994
Acacia sieberiana DC. wfo-0000211037
Acacia tortilis (Forssk.) Hayne wfo-0000211235
Adansonia digitata L. wfo-0000519672 558628-1
Afrocarpus falcatus (Thunb.) C.N.Page wfo-0000522640 946473-1
Albizia grandibracteata Taub. wfo-0000183441 473256-1
Albizia gummifera (J.F.Gmel.) C.A.Sm. wfo-0000183535 473259-1
Albizia lebbeck (L.) Benth. wfo-0000184271 99109-3
Albizia schimperiana Oliv. wfo-0000186271 473389-1

25  Note that these included spelling variants.
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Species Authorship WFO.ID WCVP.ID
Annona senegalensis Pers. wfo-0000537928 72309-1
Anogeissus leiocarpa (DC.) Guill. & Perr. wfo-0000538097
Antiaris toxicaria Lesch. wfo-0000538857 850341-1
Azadirachta indica A.Juss. wfo-0000557668 1213180-2
Balanites aegyptiaca (L.) Delile wfo-0000313273 813589-1
Bauhinia thonningii Schum. wfo-0000170425
Berchemia discolor (Klotzsch) Hemsl. wfo-0000564133 716679-1
Borassus aethiopum Mart. wfo-0000350303 664869-1
Boswellia microphylla Chiov. wfo-0000569709 127052-1
Boswellia neglecta S.Moore wfo-0000569712 127056-1
Boswellia ogadensis Vollesen wfo-0000569717 905757-1
Boswellia papyrifera (Caill. ex Delile) Hochst. wfo-0000569719 127060-1
Boswellia pirottae Chiov. wfo-0000569720 127061-1
Boswellia rivae Engl. wfo-0000569722 127063-1
Bridelia micrantha (Hochst.) Baill. wfo-0000421441 340183-1
Cajanus cajan (L.) Millsp. wfo-0000179103 1152177-2
Calliandra calothyrsus Meisn. wfo-0001050431
Callistemon citrinus (Curtis) Skeels wfo-0000775642
Calotropis procera (Aiton) Dryand. wfo-0000581500 1004515-2
Capparis tomentosa Lam. wfo-0000585223 146824-1
Carica papaya L. wfo-0000588009 30011248-2
Casuarina cunninghamiana Miq. wfo-0000590647 159845-1
Casuarina equisetifolia L. wfo-0000590663 159856-1
Catha edulis (Vahl) Endl. wfo-0000590815 941530-1
Ceiba pentandra (L.) Gaertn. wfo-0000592594 1166232-2
Celtis africana Burm.f. wfo-0000593393 850978-1
Citrus sinensis (L.) Osbeck wfo-0001249323
Coffea arabica L. wfo-0000910097 747038-1
Combretum aculeatum Vent. wfo-0000616040 169878-1
Combretum collinum Fresen. wfo-0000616192 170004-1
Combretum molle R.Br. ex G.Don wfo-0000616553 170290-1
Commiphora africana (A.Rich.) Endl. wfo-0000617158 127576-1
Commiphora guidottii Chiov. ex Guid. wfo-0000617297 127676-1
Commiphora myrrha (Nees) Engl. wfo-0000617380 127741-1
Cordeauxia edulis Hemsl. wfo-0000165271 487135-1
Cordia africana Lam. wfo-0000620224 113939-1
Corymbia citriodora (Hook.) K.D.Hill & 

L.A.S.Johnson
wfo-0000925431 986336-1

Croton macrostachyus Hochst. ex Delile wfo-0000931591 342917-1
Cupressus lusitanica Mill. wfo-0000630722
Cupressus sempervirens L. wfo-0000630789 261974-1
Cytisus proliferus L.f. wfo-0000185459
Dalbergia melanoxylon Guill. & Perr. wfo-0000172325 490328-1

Table A1.1. Continued
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Species Authorship WFO.ID WCVP.ID
Delonix regia (Hook.) Raf. wfo-0000166389 491231-1
Dichrostachys cinerea (L.) Wight & Arn. wfo-0000176871 492423-1
Diospyros mespiliformis Hochst. ex A.DC. wfo-0000649333 322702-1
Dobera glabra (Forssk.) Juss. ex Poir. wfo-0000652723 779320-1
Dodonaea viscosa (L.) Jacq. wfo-0000653170 30058367-2
Dombeya torrida (J.F.Gmel.) Bamps wfo-0000654003 823248-1
Dovyalis abyssinica (A.Rich.) Warb. wfo-0000925138 111558-1
Dovyalis caffra (Hook.f. & Harv.) Sim wfo-0000925143 111560-1
Ekebergia capensis Sparrm. wfo-0000663623 578362-1
Entada abyssinica A.Rich. wfo-0000205748 493817-1
Erythrina abyssinica DC. wfo-0000180423 494336-1
Erythrina brucei Schweinf. wfo-0000180564 494368-1
Eucalyptus camaldulensis Dehnh. wfo-0000954597 592777-1
Eucalyptus globulus Labill. wfo-0000954998 592965-1
Eucalyptus grandis W.Hill wfo-0000955035 592976-1
Eucalyptus saligna Sm. wfo-0000955842 593334-1
Eucalyptus viminalis Labill. wfo-0000956115 593454-1
Euphorbia tirucalli L. wfo-0000965116 348517-1
Faidherbia albida (Delile) A.Chev. wfo-0000186081 494764-1
Ficus carica L. wfo-0000687690 852556-1
Ficus sur Forssk. wfo-0000690530 853792-1
Ficus sycomorus L. wfo-0000690537 853797-1
Flacourtia indica (Burm.f.) Merr. wfo-0000925655 365348-1
Flueggea virosa (Roxb. ex Willd.) Royle wfo-0000967255 1013601-1
Garcinia livingstonei T.Anderson wfo-0000694422 428049-1
Gardenia volkensii K.Schum. wfo-0000971256 751323-1
Grevillea robusta A.Cunn. ex R.Br. wfo-0000709544 50798-3
Grewia damine Gaertn. wfo-0000709875
Grewia villosa Willd. wfo-0000710393 834635-1
Hagenia abyssinica (Bruce ex Steud.) J.F.Gmel. wfo-0000994920 725448-1
Hyphaene thebaica (L.) Mart. wfo-0000216304 667540-1
Ilex mitis (L.) Radlk. wfo-0000729632 83531-1
Jacaranda mimosifolia D.Don wfo-0000778761 130936-2
Jatropha curcas L. wfo-0000219580 131462-2
Juniperus procera Hochst. ex Endl. wfo-0000355729 262311-1
Kigelia africana (Lam.) Benth. wfo-0000778884 109874-1
Lawsonia inermis L. wfo-0000366658 553638-1
Leucaena leucocephala (Lam.) de Wit wfo-0000164084 138955-2
Maerua aethiopica (Fenzl) Oliv. wfo-0001290548 147641-1
Malus domestica Borkh. wfo-0001008355 726282-1
Mangifera indica L. wfo-0000371248 69913-1
Markhamia lutea (Benth.) K.Schum. wfo-0000779039 110020-1
Melia azedarach L. wfo-0000450150 578949-1

Table A1.1. Continued
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Species Authorship WFO.ID WCVP.ID
Milicia excelsa (Welw.) C.C.Berg wfo-0000447908 910900-1
Millettia ferruginea (Hochst.) Baker wfo-0000199980 507366-1
Moringa oleifera Lam. wfo-0001085051 584736-1
Moringa stenopetala (Baker f.) Cufod. wfo-0001085058 584747-1
Nuxia congesta R.Br. ex Fresen. wfo-0000797418 546816-1
Olea capensis L. wfo-0000817299 610645-1
Olea europaea L. wfo-0000817273 610675-1
Oxytenanthera abyssinica (A.Rich.) Munro wfo-0000882687 410276-1
Parkinsonia aculeata L. wfo-0000170206 512242-1
Persea americana Mill. wfo-0000465160 325643-2
Phoenix reclinata Jacq. wfo-0000269796 668943-1
Pinus patula Schiede ex Schltdl. & Cham. wfo-0000481882 314961-2
Polyscias fulva (Hiern) Harms wfo-0000280060 91769-1
Pouteria adolfi-friedericii (Engl.) A.Meeuse wfo-0000281508
Prunus africana (Hook.f.) Kalkman wfo-0000995790 729417-1
Pterolobium stellatum (Forssk.) Brenan wfo-0000170624 516643-1
Rhamnus prinoides L’Hér. wfo-0000460040 718580-1
Saba comorensis (Bojer ex A.DC.) Pichon wfo-0000299250 81757-1
Salvadora persica L. wfo-0000492914 779348-1
Sarcocephalus latifolius (Sm.) E.A.Bruce wfo-0000303384
Schefflera abyssinica (Hochst. ex A.Rich.) Harms wfo-0000305601
Schinus molle L. wfo-0000435157 71044-1
Sclerocarya birrea (A.Rich.) Hochst. wfo-0000434908 71162-1
Searsia natalensis (Bernh. ex C.Krauss) 

F.A.Barkley
wfo-0000434889 71180-1

Securidaca longipedunculata Fresen. wfo-0000503535
Senna didymobotrya (Fresen.) H.S.Irwin & Barneby wfo-0000163726 234467-2
Sesbania bispinosa (Jacq.) W.Wight wfo-0000186833 518441-1
Sesbania sesban (L.) Merr. wfo-0000178461 518533-1
Shirakiopsis elliptica (Hochst.) Esser wfo-0000309756 1014108-1
Spathodea campanulata P.Beauv. wfo-0000779723 110661-1
Steganotaenia araliacea Hochst. wfo-0000431247 849204-1
Stereospermum kunthianum Cham. wfo-0000779673 110792-1
Strychnos henningsii Gilg wfo-0000502962 547225-1
Strychnos innocua Delile wfo-0000502968 547244-1
Strychnos spinosa Lam. wfo-0000502889 547485-1
Syzygium guineense (Willd.) DC. wfo-0000318724 601750-1
Tamarindus indica L. wfo-0000170926 520167-1
Tamarix aphylla (L.) H.Karst. wfo-0000458771 828051-1
Terminalia brownii Fresen. wfo-0001296425 171010-1
Trichilia emetica Vahl wfo-0000455454 579419-1

Table A1.1. Continued
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Species Authorship WFO.ID WCVP.ID
Vangueria madagascariensis J.F.Gmel. wfo-0000331269 769766-1
Vepris nobilis (Delile) Mziray wfo-0000420153 969503-1
Vernonia amygdalina Delile wfo-0000072744
Vitellaria paradoxa C.F.Gaertn. wfo-0000332885 790034-1
Vitex doniana Sweet wfo-0000333061 865694-1
Warburgia ugandensis Sprague wfo-0000427581 146038-1
Ximenia americana L. wfo-0000428247 316341-2
Yushania alpina (K.Schum.) W.C.Lin wfo-0000907601
Ziziphus jujuba Mill. wfo-0000430303 719213-1
Ziziphus mucronata Willd. wfo-0000430319 719359-1
Ziziphus spina-christi (L.) Desf. wfo-0001131308 719427-1

Table A1.2. Synonyms (current names in the World Checklist of Vascular Plants (WCVP) with the naming 
authority from the same database) and ID for species where World Flora Online and the World Checklist on 
Vascular Plants disagreed on the current name.

Species Synonym Authority WCVP.ID
Acacia abyssinica Vachellia abyssinica (Hochst. ex Benth.) Kyal. & Boatwr. 77131675-1
Acacia lahai Vachellia lahai (Steud. & Hochst. ex Benth.) Kyal. 

& Boatwr.
77131736-1

Acacia nilotica Vachellia nilotica (L.) P.J.H.Hurter & Mabb. 77089275-1
Acacia polyacantha Senegalia polyacantha (Willd.) Seigler & Ebinger 60451312-2
Acacia senegal Senegalia senegal (L.) Britton 518304-1
Acacia seyal Vachellia seyal (Delile) P.J.H.Hurter 77089276-1
Acacia sieberiana Vachellia sieberiana (DC.) Kyal. & Boatwr. 77131781-1
Acacia tortilis Vachellia tortilis (Forssk.) Galasso & Banfi 77087190-1
Anogeissus leiocarpa Terminalia leiocarpa (DC.) Baill. 171202-1
Bauhinia thonningii Piliostigma thonningii (Schumach.) Milne-Redh. 514346-1
Calliandra calothyrsus Calliandra houstoniana var. 

calothyrsus
(Meisn.) Barneby 1010291-1

Callistemon citrinus Melaleuca citrina (Curtis) Dum.Cours. 77108602-1
Citrus sinensis Citrus ×aurantium L. 59600-2
Cupressus lusitanica Hesperocyparis lusitanica (Mill.) Bartel 60451554-2
Cytisus proliferus Chamaecytisus albus (Hacq.) Rothm. 485939-1
Grewia damine Grewia tiliifolia Vahl 834597-1
Pouteria adolfi-friedericii Pouteria adolfi-friederici (Engl.) A.Meeuse 788785-1
Sarcocephalus latifolius Nauclea latifolia Sm. 757144-1
Schefflera abyssinica Astropanax abyssinicus (Hochst. ex A.Rich.) Seem. 89896-1
Securidaca 
longipedunculata

Securidaca longepedunculata Fresen. 692714-1

Vernonia amygdalina Gymnanthemum 
amygdalinum

(Delile) Sch.Bip. 210886-1

Yushania alpina Oldeania alpina (K.Schum.) Stapleton 77131105-1

Table A1.1. Continued
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Table A1.3. Confirmed synonym names of the candidate species for species distribution modelling (Table 1). 
Synonyms were confirmed with World Flora Online where there are no entries in the Comment column.

Species Synonym Comment
Acacia abyssinica Vachellia abyssinica see Table A1.2
Acacia lahai Vachellia lahai see Table A1.2
Acacia polyacantha Senegalia polyacantha see Table A1.2
Acacia senegal Senegalia senegal
Acacia seyal Vachellia seyal see Table A1.2
Acacia sieberiana Vachellia sieberiana see Table A1.2
Afrocarpus falcatus Podocarpus falcatus
Anogeissus leiocarpa Terminalia leiocarpa
Bauhinia thonningii Piliostigma thonningii
Calliandra calothyrsus Calliandra houstoniana see Table A1.2
Citrus sinensis Citrus aurantium see Table A1.2
Combretum molle Combretum rochetanum
Corymbia citriodora Eucalyptus citriodora
Cupressus sempervirens Cupressus pyramidalis
Cytisus proliferus Chamaecytisus palmensis
Cytisus proliferus Chamaecytisus proliferus
Dodonaea viscosa Dodonaea angustifolia Dodonaea viscosa subsp. angustifolia
Dombeya torrida Dombeya schimperiana
Faidherbia albida Acacia albida
Grewia damine Grewia bicolor
Prunus africana Pygeum africanum
Sarcocephalus latifolius Nauclea latifolia see Table A1.2
Searsia natalensis Rhus natalensis
Sesbania bispinosa Sesbania aculeata
Shirakiopsis elliptica Sapium ellipticum
Spathodea campanulata Spathodea nilotica
Vepris nobilis Teclea nobilis
Vernonia amygdalina Gymnanthemum amygdalinum see Table A1.2
Yushania alpina Oldeania alpina see Table A1.2
Yushania alpina Arundinaria alpina
Yushania alpina Sinarundinaria alpina
Ziziphus jujuba Ziziphus mauritiana

Table A1.4. Authorship and ID for current species names in World Flora Online (January 2023) via the WorldFlora 
package (Kindt 2020). Only species where the name has changed from Table A1.1 have been included.

Species Type taxonID Current name Current Authorship
Acacia abyssinica new wfo-0001336820 Vachellia abyssinica (Hochst. ex Benth.) Kyal. & 

Boatwr.
Acacia lahai new wfo-0001336856 Vachellia lahai (Steud. & Hochst. ex Benth.) 

Kyal. & Boatwr.
Acacia nilotica new wfo-0001284776 Vachellia nilotica (L.) P.J.H.Hurter & Mabb.
Acacia polyacantha new wfo-0000744649 Senegalia polyacantha (Willd.) Seigler & Ebinger
Acacia senegal new wfo-0001281302 Senegalia senegal (L.) Britton

continued on next page
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Acacia seyal new wfo-0001284777 Vachellia seyal (Delile) P.J.H.Hurter
Acacia sieberiana new wfo-0000201188 Acacia hamiltoniana Maiden
Acacia tortilis new wfo-0001285358 Vachellia tortilis (Forssk.) Galasso & Banfi
Anogeissus leiocarpa new wfo-0000408839 Terminalia leiocarpa Baill.
Bauhinia thonningii new wfo-0000170413 Piliostigma thonningii (Schumach.) Milne-Redh.
Calliandra calothyrsus new wfo-0000199357 Calliandra houstoniana  

var. calothyrsus
(Meisn.) Barneby

Callistemon citrinus new wfo-0000239474 Melaleuca citrina (Curtis) Dum.Cours.
Citrus sinensis new wfo-0000607909 Citrus × aurantium L.
Cytisus proliferus new wfo-0001057343 Chamaecytisus prolifer (L.f.) Link
Sarcocephalus 
latifolius

new wfo-0000249572 Nauclea latifolia Sm.

Schefflera abyssinica new wfo-0000294220 Astropanax abyssinicum (Hochst. ex A.Rich.) Seem.
Securidaca 
longipedunculata

spelling wfo-0000503535 Securidaca 
longepedunculata

Fresen.

Vernonia amygdalina new wfo-0000096111 Gymnanthemum 
amygdalinum

(Delile) Sch.Bip.

Yushania alpina new wfo-0001336675 Oldeania alpina (K.Schum.) Stapleton

Table A1.4. Continued
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https://doi.org/10.15468/1ojlip
https://doi.org/10.15468/22kwre
https://doi.org/10.15468/2a9ebc
https://doi.org/10.15468/2wbxxh
https://doi.org/10.15468/3gmsj9
https://doi.org/10.15468/3v0exk
https://doi.org/10.15468/4i21ik
https://doi.org/10.15468/4owz9w
https://doi.org/10.15468/4vlfas
https://doi.org/10.15468/50rhvf
https://doi.org/10.15468/5cdfgv
https://doi.org/10.15468/5sl7sh
https://doi.org/10.15468/5wurxy
https://doi.org/10.15468/5yvniw
https://doi.org/10.15468/6habyb
https://doi.org/10.15468/6xu3nq
https://doi.org/10.15468/7c2j4n
https://doi.org/10.15468/7gudyo
https://doi.org/10.15468/7pjxmn
https://doi.org/10.15468/7uigwo
https://doi.org/10.15468/81w5bx
https://doi.org/10.15468/8tx9fr
https://doi.org/10.15468/8wushq
https://doi.org/10.15468/8wyijj
https://doi.org/10.15468/92bnx4
https://doi.org/10.15468/9fvpm9
https://doi.org/10.15468/9tfduu
https://doi.org/10.15468/9wycdn
https://doi.org/10.15468/ab3s5x
https://doi.org/10.15468/abe1lg
https://doi.org/10.15468/axtkuz
https://doi.org/10.15468/aywock
https://doi.org/10.15468/bbtur8
https://doi.org/10.15468/bdv8ee
https://doi.org/10.15468/bhvwem
https://doi.org/10.15468/blra4p
https://doi.org/10.15468/bmbo9q
https://doi.org/10.15468/bpx7wi
https://doi.org/10.15468/bvg1jz
https://doi.org/10.15468/bvrtsv
https://doi.org/10.15468/bznvdf
https://doi.org/10.15468/c4w4co
https://doi.org/10.15468/ckbuue
https://doi.org/10.15468/cmnjt1
https://doi.org/10.15468/cmrlox

https://doi.org/10.15468/cpnhcc
https://doi.org/10.15468/cribcp
https://doi.org/10.15468/d4ssas
https://doi.org/10.15468/dayejw
https://doi.org/10.15468/djzgie
https://doi.org/10.15468/dlwwhz
https://doi.org/10.15468/dq9umt
https://doi.org/10.15468/e4y4nr
https://doi.org/10.15468/e8rhqm
https://doi.org/10.15468/eabysc
https://doi.org/10.15468/encqea
https://doi.org/10.15468/enkiul
https://doi.org/10.15468/exh7vo
https://doi.org/10.15468/exwp2m
https://doi.org/10.15468/fbbbfl
https://doi.org/10.15468/g8pbz5
https://doi.org/10.15468/gcoa2d
https://doi.org/10.15468/gcvvtr
https://doi.org/10.15468/geylm0
https://doi.org/10.15468/gm1qxi
https://doi.org/10.15468/h1txwb
https://doi.org/10.15468/h3mptq
https://doi.org/10.15468/h85hfz
https://doi.org/10.15468/hja69f
https://doi.org/10.15468/hnhrg3
https://doi.org/10.15468/hnlnjq
https://doi.org/10.15468/hnvndq
https://doi.org/10.15468/hseoaq
https://doi.org/10.15468/hy2rea
https://doi.org/10.15468/iinlqm
https://doi.org/10.15468/iokuu0
https://doi.org/10.15468/iozuua
https://doi.org/10.15468/irkrku
https://doi.org/10.15468/izzxhf
https://doi.org/10.15468/jbp1u9
https://doi.org/10.15468/jbqjzg
https://doi.org/10.15468/jcpwq5
https://doi.org/10.15468/jgauer
https://doi.org/10.15468/jgnvoj
https://doi.org/10.15468/jgqm7v
https://doi.org/10.15468/jhysv3
https://doi.org/10.15468/jmlkgk
https://doi.org/10.15468/jyrthk
https://doi.org/10.15468/kpwam2
https://doi.org/10.15468/ku21hg

Appendix 2. Data sets accessed from GBIF

Data accessed from GBIF on 1 October 2018 (Section 5) belonged to the following occurrence datasets:
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https://doi.org/10.15468/l5pasu
https://doi.org/10.15468/lbjfvo
https://doi.org/10.15468/lcbrct
https://doi.org/10.15468/lhlwfx
https://doi.org/10.15468/lmf6x5
https://doi.org/10.15468/looi3y
https://doi.org/10.15468/ly60bx
https://doi.org/10.15468/lzrybq
https://doi.org/10.15468/m0cqdu
https://doi.org/10.15468/m2s30i
https://doi.org/10.15468/mboy4p
https://doi.org/10.15468/mci9vv
https://doi.org/10.15468/mdnmzb
https://doi.org/10.15468/mi3taw
https://doi.org/10.15468/mnys1f
https://doi.org/10.15468/mpx4qk
https://doi.org/10.15468/mqurnm
https://doi.org/10.15468/msqavy
https://doi.org/10.15468/mz2hp2
https://doi.org/10.15468/nc6rxy
https://doi.org/10.15468/nheq3e
https://doi.org/10.15468/nud2pn
https://doi.org/10.15468/nxnqzf
https://doi.org/10.15468/nyhbez
https://doi.org/10.15468/oblwrk
https://doi.org/10.15468/oeqwrv
https://doi.org/10.15468/ohy7xv
https://doi.org/10.15468/oi1ego
https://doi.org/10.15468/oqniiy
https://doi.org/10.15468/owja31
https://doi.org/10.15468/p4cwmb
https://doi.org/10.15468/p4hm6o
https://doi.org/10.15468/pff0t6
https://doi.org/10.15468/pgrqej
https://doi.org/10.15468/pkgevu
https://doi.org/10.15468/pucjqn
https://doi.org/10.15468/pzlxvg
https://doi.org/10.15468/qbb7sg
https://doi.org/10.15468/qvbvdp
https://doi.org/10.15468/r9azth
https://doi.org/10.15468/ra9vp0
https://doi.org/10.15468/rckmn2
https://doi.org/10.15468/rmiqhw
https://doi.org/10.15468/rqn53h
https://doi.org/10.15468/rvjdu1
https://doi.org/10.15468/rydcn2

https://doi.org/10.15468/s1f4aw
https://doi.org/10.15468/s3o29s
https://doi.org/10.15468/s5auru
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Appendix 3. Data sets accessed from BIEN

Data accessed from BIEN on 1 October 2018 (Section 5) were attributed to the following custodians, 
compiled via the field of ‘dataowner’ of the downloaded datasets. Abbreviations for some of the 
herbaria correspond to those listed in https://bien.nceas.ucsb.edu/bien/data-contributors/herbaria/ .

A, AAU, ABH, AD, AK, AMAZ, ARAN, AS, AUT023, AUT024, AUT052, AZE009, AZE015, B, BA, BAA, BAB, 
Badru Mugerwa, BAF, BC, BCN, BDBCV, BEREA, BFL, BG, BIGA, BIGU, BIO, BIO-UNIPI, BM, BMO, BOLV, 
BPBM, BR, Brad Boyle, BRH, BRI, BRLU, C, CAH, CANB, CAS, CAS-BOT-BC, CAY, CBM, CDA, CDBI, CDMB, 
Cenargen, Centre National de la Recherche Scientifique et Technologique / Institut de l’environnement 
et de recherches agricoles, Centre National de la Recherche Scientifique et Technologique / Institut 
de lenvironnement et de recherches agricoles, Centre National des Semences Forestières, CETI, 
CHAPA, CHEP, chilesp, CHR, CHSC, CIB, CIB-UV, CIBYC-UAEM, CICY, Ciência e Tecnologia (IFAM), CIHS-
UAC, CIIDIR-IPN, CJBN, CLARK-A, CNARP, CNS, CNS-UT, COA, COFC, COI, COL, Comissão Executiva do 
Plano da Lavoura Cacaueira (CEPLAC), CONC, CPR, CR, CRSN_LWIRO, CSUSB, CTES, CU, CUZ, DAKAR, 
DAV, David Kenfack, DBF-NHMD, DBG, DICTUS-USON, DNA, Douglas Sheil, DSM, DUKE, E, EA, EAP, EB-
BUAP, ECOSUR, EFG, Eileen Larney, Emanuel Martin, EMAU, EMMA, Empresa Brasileira de Pesquisa 
Agropecuária (EMBRAPA), EMY, ENAG, ENCB-IPN, ENT, ESALQ, ESP003, ESP007, ESP046, ESP089, 
ESP119, ESP197, F, FA-UAS, FAPESP, FB-UMSNH, FC-UNAM, FCB-UANL, FCF-UANL, FCN-UAQ, FCO, FCQ, 
FESI-UNAM, FFPRI, FHO, FI, FLAS, FMNH, FR, Francesco Rovero, FT, FTG, Fundação Universidade Federal 
de Mato Grosso do Sul (UFMS), FundaciÃ³n Puerto Rastrojo Â- ColÃ´mbia, Fundación GAIA, FURB, 
FUVATES, FZ-UACH, G, GA, GABON, GB, George Chuyong, GH, GI, GLM, GMBA, GMNHJ, GRBGT, GUAY, 
GZU, HAL, Harvard University, HBG, HCM, HCSM, HEM, Herb. Hinton, Herbario Amazónico Colombiano, 
Herbario de la Universidad Industrial de Santander, Herbario Universidad de Antioquia, Herbarium 
togoense, HGM, HIB, HN, HNB, HNC, HNMN, HO, HOXA, HSB, HSC, HSS, HU, HUA, HUAL, HULE, HUSA, 
HUT, HYO, IA, IAC, IADIZA, IANIGLA, IAP, IAvH, IAVH, IBE, IBK, IBOT SAS, IBSC, IBt, IBT, IBUNAM, ICESI, 
ICN, IE-UNAM, IEA, IEA-UAT, IF, IGB, IGL-UNAM, IHNE, IICT, IIZD-UASLP, ILCA, IMA, IMECBIO-UDG, 
INB, INBio, INCIVA, INECOL, INIFAP-CECOY, INIREB, INM, INPA, Institut de Recherche Agronomique 
de Guinée (IRAG), Instituto Amazónico de Investigaciones Científicas SINCHI, Instituto de Botânica, 
Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Instituto Federal de 
Educação, Instituto Nacional de Pesquisas da Amazônia (INPA), Instituto Plantarum de Estudos da Flora 
Ltda (HPL), IPA, IPT, IRENAT-CP, IRVC, ISA, ISKW, ITIC, James S. MIller, JAUM, JBAG, JBBJCM, JBGP, JBRJ, 
JBS, JCT, Jean Claude Razafimahaimodison, JEO, JEPS, JSCM, JUA, JYV, K, KAW, KE, Keith Pohs, KMN, 
KOM, KPM, KTU, KU, KUN, KURA, L, LA, LAGU, LBG, LBV, LD, LE, LEB, LEGON-GC, LG, LIL, LISC, LMA, LMU, 
LOJA, LP, LPB, LSU, LTB, LUKI_INERA, LWI, M, MA, MAK, MAL, Mar-Elise Hill, Matteo Detto, Mauricio 
Bonifacino, MB, MBK, MBM, MBML, MCNAM, MEDEL, MEL, MELU, MEXU, Meyner Nusalawo, MGC, 
MHES, MHNG, MHU, MICH, Miriam van Heist, MISS, MKD001, MNHM, MNHN, MNHNL, MO, MOL, 
Moscow State University, MPN, MPU, MSC, MUB, MUHNAC, Museo de La Salle - Universidad de La 
Salle, Museo Nacional de Costa Rica (MNCR), Museu de Ciências Naturais - Fundação Zoobotânica do 
Rio Grande do Sul (MCN-FZBRS), MY, NAS, nbf, ND, NE, NH, NHMM, NHMUK, NHT, NMNH-SI, NMNL, 
NMNS, NO DISPONIBLE, NOU, NSW, NSW Office of Environment and Heritage, NU, NY, NYBG, NZFRI, O, 
OBI, Oliver Phillips, OSA, OTS, P, PAMP, Patricia Alvarez-Loayza, Patrick Boundja, Patrick Jansen, PDA, 
PE, PERTH, PNFM, PRE, PRU, PTHM, PUCRS, PUJ, PY, QCA, QCNE, Richard Condit, Rob Hunt, Robert 
Peet, RPSC, RSA, S, SALA, SANBI, SANT, Sarah Yoga Bengbate, SAV, SBBG, SD, SDNHM, SDSU, SEINET, 
SEL, SERBO, SERG, SEV, SFV, SI, SJSU, SMNH, SMNK, SMU, SNSB-M, SP, SRGH, STU, Susan Letcher, SUVA, 
SW, TAES, TAI, TAIF, TALL, TAM, TAN, TEF, TEFH, TFD, Tim Killeen, TKPM, TLMF, TOYA, TRH, TROM, TUB, 
U, UA, UAAAN, UACh, UADY, UAZ, UC, UCALDAS, UCD, UCO, UConn, UCR, UCS, UDEA, UDENAR, UDFJC, 
UEFS, UEL, UEM, UEPA, UESB, UESC, UFBA, UFC, UFERSA, UFES, UFMA, UFPB, UFPE, UFPI, UFPR, UFRB, 
UFRN, UFRPE, UFS, UFSC, UFSJ, UJAT, UJLOG, ULB, ULM, ULS, UM, UMO, UNAL, UNAN-LEON, UnB, 
UNEMAT, UNESC, UNESP, UNEX, Uniamazonia, UNICACH, UNICAMP, UNICAP, UNICORDOBA, UNISANTA, 
UNITINS, UNIVASF, Universidad Católica de Oriente, Universidad de Antioquia, Universidad Industrial 
de Santander, Universidad Tecnológica del Chocó, Universidade Estadual de Londrina, Universidade 
Estadual Paulista, Universidade Federal da Bahia (UFBA), Universidade Federal de Mato Grosso 
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(UFMT), Universidade Federal de Minas Gerais (UFMG), Universidade Federal de Sergipe, Universidade 
Federal do Ceará, Universidade Federal do Pará (UFPA), Universidade Federal do Paraná, Universidade 
Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Universidade Federal Rural de Pernambuco, 
Universidade Regional de Blumenau, Universidade Tecnológica Federal do Paraná (UTFPR), Université 
de Montréal Biodiversity Centre, Université de Strasbourg, University of Alberta Museums, University 
of British Columbia, UNM, UoB-IB, UPN, UPNA, UPS, UQUINDÍO, US, USCG, USF, USM, USMS, USP, 
USZ, UTEP, UTFPR, UvA-IBED, UVAL, VAL, VIT, W, WAG, WELT, WII, WIS, WOLL, WTU, WU, XAL, YUG027, 
YUG047
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CIFOR-ICRAF Working Papers contain preliminary or advanced research results on important tropical forest issues 
that need to be published in a timely manner to inform and promote discussion. This content has been internally 
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This working paper describes the methods used to develop the online Climate change atlas for Africa of 
tree species prioritized for forest landscape restoration in Ethiopia. The purpose of the atlas, available at 
http://atlas.worldagroforestry.org/, is to indicate how climate change is likely to affect the locations where 
particular tree species can grow in Africa. The atlas shows the baseline and 2050s habitat distributions across 
Africa for 127 tree species. Methods behind the creation of the atlas described in this working paper include: 
the selection of tree species; the processing and selection of predictor variables; the selection of future 
climates; the compilation of occurrence observations, and their spatial and environmental thinning; the 
compilation of background observations; the spatial folding of occurrence and background observations; the 
calibration of species distribution models and the generation of suitability maps; the discrimination of areas 
with novel environmental conditions; the generation of habitat change maps; and the creation of convex 
hulls for an a posteriori distance constraining method. This working paper is not a beginner’s guide to species 
distribution modelling; however, for users who also require an initial introduction, we provide references to 
appropriate resources.
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The Center for International Forestry Research (CIFOR) and World Agroforestry (ICRAF) envision a more equitable world 
where trees in all landscapes, from drylands to the humid tropics, enhance the environment and well-being for all. CIFOR-
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