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Abstract 8 

Soil carbon sequestration can be estimated from field to global scale using numerical 9 

soil/ecosystem models. In this chapter we describe the structure and development of models 10 

that have been widely used at international level, from simple models that include carbon 11 

only to model that include descriptions of the dynamics of a range of nutrients. We also 12 

present examples of the application from field to global scale of different models to answer a 13 

range of different questions on the impact of land use and climate changes on soil carbon 14 

sequestration.  15 

A full discussion of the impact of soil carbon modelling on political and socio-economical 16 

aspects is included to emphasise the need of a close interaction between model developers, 17 

researchers, land owners/users and policy makers to ensure the development of robust 18 

approaches to climate change, food security and soil protection. 19 

 Whatever type of models are used to meet future challenges, it is important that they 20 

continue to be tested using appropriate data, and that they are used in regions and for land 21 

uses where they have been developed and validated.  22 

 23 
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 27 

9.1. Introduction 28 

Soils globally represent the most significant long term organic carbon (C) store in terrestrial 29 

ecosystems, containing 4.5 times as much C as all living biomass and 3.1 times as much as 30 

the atmosphere (McClean et al., 2015). Therefore, soil organic carbon (SOC) dynamics have 31 

become increasingly important in many research and policy areas (Manlay et al., 2007), 32 

ranging from small-scale projects to preserve or improve soil health, to large-scale climate 33 

change mitigation strategies (Lal 2004, Powlson et al., 2011). The soil system is 34 

heterogeneous and complex and direct SOC measurements alone do not easily support these 35 

types of efforts. Simulation models, however, provide the capacity for numeric evaluation of 36 

SOC after changes in land uses at different time and spatial scales. This has led to an 37 

expanding use of soil models specifically to predict SOC dynamics in order to apply policies 38 

or to make decisions on land use and management (Campbell and Paustian, 2015). 39 

Different types of models have been developed in an attempt to quantify C in soil, including 40 

empirical and process-based multi-compartment models. These models have varying levels of 41 

complexity and their utility will depend on the data sets available to drive them (Dondini et 42 

al., 2009). In empirical modelling, there is no attempt to model the processes that result in 43 

changes in soil C; the model is a mathematical formula that has been fitted to reproduce the 44 

available data and can then be used to predict other values within similar environmental 45 

conditions (Lawson and Tabor, 2001). By contrast, process-based models have been 46 

developed from an understanding of how soil C is affected by soil properties, land 47 



3 
 

management and weather fluctuations. These models have varying levels of complexity and 48 

the choice of model depends on the data available to drive the simulation as well as the 49 

conditions used to develop and test the model.  50 

The objective of this work is to describe the structure and development of models that have 51 

been widely used at international level to assess the impact of land-use and climate change on 52 

SOC stocks. We also aim to describe the versatility of model applications and their 53 

importance to disentangle local and global socio-economic-environmental issues by reporting 54 

practical applications of such models from field to global scale. 55 

 56 

9.2. Empirical models 57 

Empirical models seek to parameterise a hypothesised relationship between variables, 58 

typically known as the dependent and independent variables. The structure of the model is 59 

determined by the statistical relationships observed within experimental data, where the 60 

hypothesis statement is translated into a simple mathematical representation. The goal in this 61 

case is prediction of the value of the dependent variable, not an explanation of the nature of 62 

the relationship between the variables (Hillier et al., 2016).  63 

 64 

9.2.1 Greenhouse gas emissions calculators 65 

The simplest empirical model is a linear one; this is used, for example, in the emission factor 66 

methods of the Intergovernmental Panel on Climate Change (IPCC) Guidelines for National 67 

Greenhouse Gas (GHG) Inventories (IPCC, 2006). From this simple approach, several tools 68 

have been developed that integrate a number of such empirical equations into a complete 69 

model for C assessment; one example of this is the Cool Farm Tool developed by Hillier et 70 

al. (2011).  71 
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The Cool Farm Tool is a GHG emissions calculator which allows users to estimate annual 72 

GHG emissions associated with the production of crops or livestock products, following the 73 

emissions from production to the farm gate (Hillier et al., 2011). It comprises a generic set of 74 

empirical models that are used to estimate full farm-gate product emissions. The model has 75 

several sub-models breaking down the overall emission by GHG emitted and farm 76 

management practices. The GHG emissions from the production and distribution of a range 77 

of fertiliser types was taken from the Ecoinvent database (Ecoinvent Centre, 2007); for 78 

nitrous oxide and nitric oxide emissions related to fertiliser application, the multivariate 79 

empirical model of Bouwman et al. (2002) – which is based on a global dataset of over 800 80 

sites – was used. Soil C stock changes were estimated using the IPCC Tier 1 method (IPCC, 81 

2006). After changes in management practice related to tillage or soil C inputs, soil C stocks 82 

change by an amount determined in Ogle et al. (2005) for a period of 20 years. The effect of 83 

manure and compost addition on soil C stocks are derived from those of Smith et al. (1997), 84 

in which relationships were established using medium/long term data from EU15 countries. 85 

A simplified model was developed from ASABE technical standards (ASABE, 2006a,b) for 86 

fuel use as a function of machinery operation for tilling, drilling, seeding and harvest 87 

operations for differing soil types and crop yields. 88 

The mitigation option tool, developed for the Climate Change, Agriculture and Food Security 89 

program of CGIAR, is another example of tool to estimate GHG from baseline management 90 

options in agriculture. The mitigation option tool accommodates a wide range of users, 91 

experts to non-experts, depending on objectives and issues such as time constraints and 92 

information available. It requires little input data and has the unique characteristic of 93 

suggesting management options that have the potential to further increase C sequestration in 94 

soils without risking crop yields. By providing a quick assessment of the C sequestration 95 

from current management practices, and of the practices that can increase the potential for 96 
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soil C sequestration, these tools are extremely useful to inform policy-makers in the design of 97 

more effective policies to support the implementation of sustainable agricultural practices.  98 

 99 

9.2.2 Models of changes in soil carbon 100 

An example of an empirical model used to determine soil C stocks is the “C response 101 

function” (CRF) concept. The C response functions are representations of the average annual 102 

change in soil C following changes in land management, and they can also be used to show 103 

the cumulative change in soil C over time. The CRF curves are developed by using published 104 

reviews and analytical data, each describing a number of long-term, paired field experiments 105 

that quantify changes in soil C in response to changes in land use and management. The 106 

development of each CRF curve is based on analysis of one or more data sets, each 107 

describing a number of long-term, paired field experiments. The difference in soil C between 108 

the control and experimental plot for each field experiment in the data set is averaged across 109 

all experiments to estimate the mean change in soil C associated with a specific change in 110 

management. The CRF curves are developed by choosing a regression algorithm that best 111 

represents the estimated trend in soil C change over time, while ensuring that the sum of 112 

annual changes in soil C is equal to the previously estimated cumulative change in soil C 113 

(McClean et al., 2015; van der Weerden et al., 2012). In order to provide an estimate of the 114 

uncertainty surrounding mean changes in soil C, the 95% confidence intervals are given for 115 

each CRF curve. Standard error and sample size are also often given so that other confidence 116 

intervals can be calculated.  117 

 118 
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9.3. Process-based models 119 

Process-based models focus on the processes mediating the movement and transformations of 120 

matter or energy. Each soil organic matter (SOM) pool within a model is characterized by its 121 

position in the model structure and its decay rate. Decay rates are usually expressed by first-122 

order rate kinetics (Paustian, 1994) with respect to the concentration (Conc) of the pool 123 

dConc
d𝑡𝑡

= −𝑘𝑘Conc 124 

Where t is the time and k is the decay constant. 125 

Here we give a description of the most common models based on the complexity of the 126 

process description and the types of nutrients modelled. 127 

 128 

9.3.1 Simple models that include carbon only 129 

The simplest approach used to model SOM turnover is to describe the SOC as pools with 130 

different turnover rates; these models predict SOC only and require minimal data inputs, 131 

including soil properties, meteorological data and land-use type, to initialise the simulations. 132 

The advantage of this approach is that the models can predict soil C sequestration under a 133 

wide range of ecosystems (e.g. from natural forest to managed arable land) and at different 134 

scales (from site to regional). Because of their simplicity and minimal input data 135 

requirements, these models are easily understood and used by non-expert users. However, 136 

because these models have been developed to describe only SOC in the soil, the impacts of 137 

nutrients on SOM turnover are not taken into account.  138 

RothC is an example of a simple process-based model that includes C only. It simulates the 139 

turnover of organic C in non-waterlogged topsoil (Coleman and Jenkinson, 1996) using a 140 

monthly time step to calculate total SOC. The model has been widely tested and used at the 141 
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plot, field, regional and global scales, using data from long-term field experiments throughout 142 

the world. The data required to run the model are: monthly rainfall and evaporation or 143 

potential evapotranspiration (mm), monthly air temperature (°C), clay content (%), an 144 

estimate of the decomposability of the incoming plant material, monthly soil cover (whether 145 

the soil is bare or vegetated), monthly input of plant residues (t C ha-1) and monthly input of 146 

farmyard manure (t C ha-1) if any. The model performs two types of simulations: "direct" that 147 

uses the known input of organic C to the soil to calculate the SOC, and "inverse" that 148 

evaluates the input of organic C required to maintain the stock of SOC.  149 

RothC uses a pool type approach, describing SOC as pools of inert organic matter, humus, 150 

microbial biomass, resistant plant material and decomposable plant material (Fig. 9.1).  151 

During the decomposition process, material is exchanged between the SOC pools according 152 

to first order rate equations. These equations are characterised by a specific rate constant for 153 

each pool, and are modified according to rate modifiers which are dependent on the 154 

temperature, moisture, and crop cover of the soil. The decomposition process results in 155 

gaseous losses of carbon dioxide (CO2). In Figure 1 we report the original RothC structure 156 

(Coleman and Jenkinson, 1996) but other RothC model structures can been found in several 157 

publications, such as Liu et al., 2009. 158 

FIGURE 9.1 HERE 159 

 160 

9.3.2 Simple models that include carbon and nitrogen 161 

The ECOSSE model (Estimate Carbon in Organic Soils –Sequestration and Emissions) is an 162 

example of a simple model that can be used for both C and nitrogen (N) simulation (Smith et 163 

al., 2010). It was developed by combining and adapting RothC (Coleman et al., 1996) and a 164 

mineral soil model (SUNDIAL, Bradbury et al., 1993) to allow organic soils in Scotland to be 165 
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simulated, which were previously not well represented in models (Smith et al., 2007). Since 166 

its inception, it has been modified for use internationally (Bell et al., 2012) and evaluated 167 

using measurements in both organic and mineral soils.  168 

ECOSSE uses a pool based approach with C and N transferred between pools. As in RothC, 169 

the soil pools used are described as biomass (active), humus (stabilised) and inert organic 170 

matter, and plant litter is described as decomposable and resistant plant material. The base 171 

rate of exchange between the pools is specific to the pools in question and is then adjusted 172 

according to rate modifiers that describe the impact of environmental factors on the 173 

processes; these include pH, moisture and temperature. Soil texture is used to determine the 174 

efficiency of the decomposition (i.e. the amount of CO2 lost on decomposition). Under 175 

aerobic conditions, the decomposition process results in gaseous losses of CO2; under 176 

anaerobic conditions losses as methane dominate. Nitrogen released from decomposing SOM 177 

as ammonium or added to the soil may be nitrified to nitrate. Carbon and N may be lost from 178 

the soil by the processes of leaching, denitrification, volatilisation or plant uptake, or C and N 179 

may be returned to the soil by plant inputs, inorganic fertilizers, atmospheric deposition or 180 

organic amendments. 181 

 182 

9.3.3 Models that include complex descriptions of carbon and nitrogen dynamics 183 

More complex models have been developed using the pool concept described above, with 184 

extra complexity to provide scope for the model to be applied at ecosystem level. These 185 

models couple descriptions of decomposition and denitrification processes, as influenced by 186 

the soil environment, to predict C and N turnover. Often such models are used to examine the 187 

impacts of management and climate change in agriculture at site and regional scale. These 188 

type of models are highly amenable, allowing the user to describe the effect of various 189 
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management and climate scenarios on a wide range of ecosystems. The user has full control 190 

of a large number of parameters, which need to be accurately determined to allow a 191 

successful simulation.    192 

The DeNitrification DeComposition (DNDC) model is an example of a model that includes 193 

detailed descriptions of the processes of C and N dynamics. It was first described by Li et al. 194 

(1992). The first versions (1.0–7.0) of DNDC consisted of three main sub models for 195 

simulating nitrous oxide and N emissions; (1) soil-climate/thermal-hydraulic flux sub-model, 196 

(2) decomposition sub-model, and (3) denitrification sub-model. During the following two 197 

decades many additions were made to the early version of DNDC. In 2000, Li (2000) 198 

reorganised the model into two components incorporating six sub-models (Fig. 9.2) and this 199 

new structure formed the basis of many DNDC-based models. Component 1 links ecological 200 

drivers to soil environmental variables and consists of the soil climate, crop growth and 201 

decomposition sub-models. Component 2 links soil environmental factors to trace gases and 202 

consists of the already known denitrification sub-model and two additional sub-models for 203 

nitrification and fermentation. 204 

FIGURE 9.2 HERE 205 

The DNDC model can be run on a site specific or regional basis. For most input variables, 206 

default values are set but many can and should be changed by the user in order to adequately 207 

describe the particular situation. Some input variables are mandatory and need to be set with 208 

individual values. These are location (latitude), weather data (daily mean air temperature and 209 

precipitation as minimum), soil bulk density, pH and SOC at the surface (0-10 cm). The 210 

mandatory input variables together with land use and crop type, soil texture and management 211 

practices will be sufficient to run the model. Among the most important output values for 212 

DNDC are daily reports on weather, soil climate, and soil C to N ratio in the pools, C and N 213 
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fluxes, water balance, crop yields and field management for the modelled site for each 214 

simulated year.  215 

Over the last 20 years, many versions of DNDC have been developed and published, both for 216 

regional application (e.g. UK-DNDC) and for specific uses (e.g. Crop-DNDC, Wetland-217 

DNDC, Forest-DNDC). In some cases, DNDC has been coupled with market management 218 

models to include economic impacts of policy (e.g. DNDC-Europe). Due to the default values 219 

that are provided, DNDC is relatively easy to use and can easily be used by inexperienced 220 

modellers. The model is freely available. 221 

 222 

9.3.4 Models that include descriptions of the dynamics of a range of nutrients 223 

Quantifying nutrient availability is crucial to understanding the interaction between plant and 224 

soil processes; these mechanisms relate to litter quantity and quality, and so are important 225 

drivers for SOM accumulation. The prediction of nutrient cycling aims to quantify the 226 

availability in time and space of nutrient elements in soil and to assess likely effects on plant 227 

growth and on nutrient fluxes, which can affect water and air quality. Quantifying nutrient 228 

availability requires an understanding of the rates of nutrient input, transformation and loss 229 

from the soil. The most appropriate approach to modelling nutrient interactions may vary 230 

with the ecosystem and with the data available to run the model.  231 

DAYCENT is an example of a C model that includes simulation of the dynamics of a range 232 

of nutrients. It was developed by a team at the Natural Resource Ecology Laboratory at 233 

Colorado State University in Fort Collins (Parton et al., 1998). It is the daily time step version 234 

of the 1994 monthly CENTURY model (Parton, 1996), also developed by the Natural 235 

Resource Ecology Laboratory at Colorado State University. The DAYCENT model is a 236 

terrestrial ecosystem model that simulates C and N cycles for forest, arable and grassland 237 
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ecosystems. There is also an option to consider the phosphorous and sulphur cycles, if 238 

needed. Fluxes from the atmosphere to plant and soil are considered in simple approaches as 239 

atmospheric CO2 concentration and N deposition. Sub-models are included that describe 240 

plant productivity, phenology, decomposition of dead plant material and SOC, soil water and 241 

temperature dynamics, and GHG fluxes; these are described in detail by Del Grosso et al. 242 

(2001). Required input variables are physical soil properties (e.g. soil texture, field capacity, 243 

wilting point, bulk density, pH), climate data and management information. The management 244 

information provided depends on the land use simulated; for grassland it includes grazing, for 245 

forests it includes thinning and fire (forest); for cropland it includes tillage, fertilizer inputs, 246 

irrigation and sowing and harvest dates. DAYCENT is a one-dimensional model developed 247 

for site simulations, but it can also be applied on a regional scale.  248 

 249 

9.3.5. Microbial mechanisms and soil process-based models 250 

A key similarity across all of the process-based models discussed above is the representation 251 

of organic matter decomposition as a first-order process. First-order models assume that the 252 

activity of decomposers only depends on temperature, pH, clay content and moisture. This 253 

assumption implies that the microbial biomass and composition are not directly represented 254 

in the models, but only indirectly via the outcome of temperature and moisture effects on the 255 

rate of decomposition (Pagel et al., 2016). One limitation of this approach is that the effects 256 

of the changes in microbial community composition due to new conditions are not directly 257 

represented in the models. Recent evidence from empirical studies suggests microbial 258 

communities may shift in composition, adapt physiologically, or evolve in response to 259 

environmental changes, such as warming, N addition, and altered precipitation (Allison and 260 

Martiny, 2008; Hawkes et al., 2011). Furthermore, management techniques, such as 261 
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ploughing or no-till, and organic amendments, such as manure or straw incorporation, change 262 

the composition of the soil biota ecosystem and hence the SOM decomposition rate. 263 

Van Groenigen et al. (2011) attempted to compare direct measurements of soil C to 264 

predictions made by RothC and a cohort model. They reported on soil C sequestration 265 

beneath a 9 year old tillage and straw management experiment in an Irish winter wheat field, 266 

to estimate the decomposition rate of crop residue under different tillage management 267 

practices. Correlation between modelled and observed SOC were achieved by varying the 268 

size and decay rate of each pool and for each treatment, therefore not developing a 269 

mathematical function to describe the effects of different management practices on the soil 270 

biota ecosystem and processes. However, insufficient experimental evidence have been 271 

provided from various environments to enable robust process-based modelling of these 272 

affects. Salinity also effects the soil biota and again SOC and input decomposition rates have 273 

to be modified in models such as RothC to implicitly model the effect, although again the 274 

actual soil biota processes are not explicitly modelled. Despite the drawbacks in describing 275 

soil decomposition by first-order process, all of the models used to assess SOC stocks in the 276 

most recent IPCC assessment (IPCC, 2014), use the same first-order assumption. Including 277 

models which can represent microbial mechanism in soils would increase the diversity of 278 

model predictions. This would help to prevent the biases which can arise from averaging the 279 

predictions of an ensemble of models that all make the same first-order assumptions (Knutti 280 

et al., 2008). 281 

One of the main challenges in including microbial mechanisms in process-based models is to 282 

define which of these mechanisms should be scaled up from plot to regional level. One 283 

approach would be to use plot data to inform the models, which could then be modified by 284 

new mechanistic equations for including microbial processes before validating the model 285 

developed using independent data. However, this approach could lead to at least two sources 286 
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of error on the simulated values at both the spatial and temporal scales. Many large-scale 287 

models operate with a spatial resolution that could potentially include high levels of 288 

microbial diversity and heterogeneity. Also, soil models at a large spatial scale are generally 289 

used to simulate soil processes over time (decades). It is unclear if plot-scale measurements, 290 

which are meant to describe microbial responses on a short-term basis, could be applied to a 291 

higher temporal scale without loss of accuracy in the model predictions (Todd-Brown et al., 292 

2012). In the future, the increased use of new technologies, such as remote sensing and 293 

precision farming, will help in reducing the granularity of our knowledge of the spatial 294 

variability of soil, soil water, plant yields and GHG emissions. The application of remote 295 

sensing will improve the accuracy and resolution of land use maps to less than 10 m 296 

resolution (current land use maps are available at 100 m x 100 m resolution); these new maps 297 

could be then used for models parameterization. Precision farming, and the associated sensors 298 

that enable 1 m x 1 m resolution detail of field soil and crop condition, will allow maps of 299 

crop yield to be made. This information can be used with new informatics technology, which 300 

will enable these large spatial data sets to be used to drive high spatial and temporal 301 

resolution models. 302 

Another approach to better represent soil C cycling processes in current models would be to 303 

quantify functional trait in microbial communities and to link these traits to key factors 304 

controlling the soil decomposition and degradation processes. There is a body of research, 305 

particularly in India investigating the impact of soil biota on fertility and the use of different 306 

biological inoculates to increase crop yields (e.g. Pandya and Saraf, 2010a,b), and hence 307 

organic input and SOC. This will lead to a better understanding of the function of different 308 

taxa of soil biota.  Consequently, a few models have been proposed to explore possible 309 

microbial roles in SOC dynamics (Wieder et al., 2015) but these models need rigorous 310 
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evaluation with observations before they can be incorporated into large-scale soil process-311 

based models (Luo et al., 2016). 312 

 313 

9.4. Examples of model application for predicting soil organic carbon changes 314 

Soil models are useful tools to estimate the effect of ‘disturbance’ events on soil C dynamics; 315 

disturbances such as climate change, land management, land cover and land use change have 316 

been widely represented in models, while soil erosion and extreme events have been found 317 

difficult to model and are not directly used in soil process-based model (Box 1). Here we 318 

present a selection of studies where soil models have been applied from field to global scale 319 

to predict SOC changes under different vegetation types.  320 

[[Text Box 1]] Impact of soil erosion and extreme events on SOC 321 

This text box shows relevant aspects of SOC modelling, which are not yet well represented in 322 

SOC model approaches. Two of these aspects are the impact of soil erosion and the impact of 323 

extreme events on SOC. Extreme event is a general term and there are several definitions 324 

available to define an event as extreme. Here we refer to extreme events as “an episode or 325 

occurrence in which a statistically rare or unusual climatic period alters ecosystem structure 326 

and/or functions well outside the bounds of what is considered typical or normal variability” 327 

(Reichstein et al., 2013). In the context of soil C, these are mainly extreme climate and 328 

weather events.  329 

Soil erosion results from extreme precipitation and storm events, and includes both wind and 330 

water erosion. Here we focus on the erosion by water, which affects a larger area (751 Mha 331 

vs 296 Mha land affected by water and wind erosion, respectively) and erodes more sediment 332 

compared to wind erosion (Lal, 2003). The scientific debate about the impact of soil erosion 333 

on the SOC is controversial; while some studies come to the conclusion that erosion causes C 334 



15 
 

losses, others show that it enhances soil C accumulation (Doetterl et al., 2016). Despite its 335 

high relevance for global C dynamics, the impact of soil erosion on the global C budget is not 336 

yet quantified (Lal, 2003; Müller-Nedebock and Chaplot, 2015) and it is rarely considered in 337 

biogeochemical models. EPIC (Williams, 1990) and CENTURY (Lugato et al., 2016) are 338 

biogeochemical models that contains an erosion routine, the RUSLE model (Renard, 1997), a 339 

revised version of the universal soil loss equation (USLE; Wischmeier and Smith, 1978). The 340 

USLE model, and its modifications, simulates sediment detachment using empirical 341 

approaches based on relative simple factors such as precipitation, soil properties, slope and 342 

tillage. The disadvantage of this approach is that sediment deposition is not simulated. 343 

Extreme events are not explicitly considered in SOC model approaches. Thresholds in the 344 

models consider limitations or impacts affected by soil water content, soil temperature or 345 

nutrient concentration in the soil without considering these explicitly as extreme event. 346 

Therefore, some direct impacts (e.g. drought might reduce respiration rates) can be simulated, 347 

whereas indirect impacts (e.g. a lag effect of respiration as the soil microbial community 348 

might be affected by a drought) won’t be considered in the model approach (Frank et al., 349 

2015). The limitations in modelling extreme events include a lack of observations describing 350 

large scale impacts and a lack of standardisation of experimental designs. Moreover, several 351 

processes may be too sensitive or too detailed to be implemented within a model – e.g. 352 

microorganisms are responsible for C sequestration, but the specific communities or activity 353 

are not directly considered in the models. 354 

As extreme events and soil erosion are hardly considered in SOC model, more experimental 355 

data are needed to understand their impacts on SOC and to calibrate and validate soil process-356 

based models. A standardized experimental and observational framework would be beneficial 357 

so that the collection of comparable modelling-friendly data sets may be realised.  358 

 359 
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 360 

9.4.1 Simulation of carbon sequestration at field plot scale  361 

9.4.1.1 Impact of land use change from grassland to woodland at Glensaugh 362 

The Glensaugh Research Station in rural Aberdeenshire is an experimental site where 363 

conversion from grassland to woodland was undertaken almost 30 years ago. The site was set 364 

up to investigate the impact of afforestation of pasture on animal output (Sibbald et al., 2001). 365 

Three tree species, namely scots pine, hybrid larch and sycamore were planted at a 400 trees 366 

ha-1 silvopastural configuration, which allows for animal grazing between the rows of trees. 367 

The same species were also planted at 2500 trees ha-1 in farm woodland plots that have 368 

received no thinning since the site was established. Both approaches integrate trees into 369 

farmland, either spatially segregated in farm woodland or integrated as silvopasture. The site 370 

was sampled for total soil C and labile, stabilized and inert C fractions in 2012 (Beckert, 371 

2016). In both silvopasture and farm woodland, SOC was found to be greater compared to the 372 

pasture treatment. While woodland and silvopasture plots had similar levels of total SOC, 373 

silvopasture showed levels of stabilized C comparable to pasture.  374 

The RothC model was used to investigate how C stocks will develop in the different land use 375 

systems at the Glensaugh site, assuming that land management remains constant. The RothC 376 

model was first run from the year of tree planting (1988) to the year of sampling (2012), 377 

assuming equilibrium at each site. Comparison with measured fractions showed that this 378 

assumption only holds true for the pasture site, which had seen no change in management. To 379 

investigate how C stocks will develop up to the year 2040 taking actual C quality into 380 

account, the model was initialized with measured fractions to replace equilibrium pools. 381 

Initializations with fractionation data resulted in the prediction of an increase in C stocks at 382 

all wooded sites, particularly in the silvopastoral systems, which showed evidence of 383 
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combined pasture/forest C stabilization mechanisms. The initialization revealed a slightly 384 

increased accumulation rate after 2020 compared to 2012-2020 before it levels off in ca. 385 

2030, indicating that initial increase in respiration is negated when the systems reach a more 386 

mature age. The results at site level agree with the results of large scale modelling (Section 387 

9.4.3.1), showing that afforestation of grassland soils could have a positive impact on SOC in 388 

the long term. 389 

 390 

9.4.1.2 Impact of climate change on grassland and arable systems in Ireland 391 

Grasslands represent an effective option for C sequestration in soils. However, predictions of 392 

increase in SOC are associated with a great uncertainty (Freibauer et al., 2004; Vleeshouwers 393 

and Verhagen, 2002). Croplands have less SOC than grassland (Cole et al., 1993) as a result 394 

of several factors including soil disturbance, less return of plant residues to the soil, less 395 

below-ground biomass and no grazing (Franzluebbers et al., 2000). Here we present a study 396 

where measured and simulated net ecosystem exchange (NEE) values from a managed 397 

grassland and a spring barley field, in Ireland, were compared with simulated NEE to validate 398 

the latest version (9.5) of the DNDC (the DeNitrification-DeComposition; 399 

www.dndc.sr.unh.edu; Li et al., 1992) model and to estimate present and future NEE and 400 

SOC (Abdalla et al., 2013). The averages measured NEE for the grassland during the 401 

experimental period (2003-2006) was calculated as -212 g C m-2. The DNDC model 402 

predicted seasonal trends of NEE effectively for 2003 and 2004 but overestimated carbon 403 

losses in 2006 (Fig. 9.3a). 404 

FIGURE 9.3 HERE 405 

The root mean square error (RMSE) values were small and ranged from 0.20 to 0.22 g C m-2 406 

with an overall RMSE of 0.21 g C m-2. The relative deviation (RD) between the measured 407 
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and simulated NEE values was also small (+30%) except in the year 2006 when it was +45%. 408 

The average annual values of NEE, GPP and Reco, over the measurement period (2003-409 

2007) were -189, 906 and 715 g C m-2, respectively.  The DNDC model effectively predicted 410 

the seasonal trend of NEE at the spring barley field (Fig. 9.3b). The RMSE values from the 411 

comparison between daily simulated and measured NEE are small, ranging from 0.09 to 0.16 412 

g C m-2 indicating a good fit between the model and simulated values. The RD values 413 

between the measured and predicted NEE values ranged from -13 to +100%, with the highest 414 

RDs in 2004 (+100%) and 2005 (+92%). These poor RD were mainly due to the DNDC 415 

overestimation of NEE peaks during the growing seasons.  416 

In future simulations to 2060, SOC at the grassland site was predicted to decrease by 2-3% by 417 

the year 2060 for all climate scenarios. At the arable site, the SOC was also predicted to 418 

decrease, but only by 1-2%. This indicates that the soil C systems for the two ecosystems are 419 

not in equilibrium. The cropland was historically under grassland prior to 1990 and, 420 

therefore, continues to lose C. The grassland had been tilled and reseeded with perennial 421 

ryegrass in 2001 and, therefore, will take time to reach a new equilibrium after the tillage 422 

disturbance. In both the arable and grassland case water stress would affect crop yields 423 

(Hastings et al., 2010) and thereby, the amount of carbon input. The model effectively 424 

predicted seasonal and annual changes in NEE at both sites, and responded appropriately to 425 

changes in air temperature, timing of precipitation events and management, which have a 426 

strong influence on the seasonal net ecosystem exchange. These results suggest that the 427 

DNDC model is a valid tool for predicting the consequences of climate change on net 428 

ecosystem exchange and SOC from arable and grassland ecosystem.  429 

 430 
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9.4.1.3 Impact of rice management in Bangladesh 431 

In Bangladesh, rice occupied 70% of all agricultural land in 2016, accounting for 7% of the 432 

world’s total harvested area (FAOSTAT, 2016). Due to different physiological 433 

characteristics, such as the need of continuous flooding of water to provide the best growth 434 

environment,  rice can sequester more C relative to upland crops and offers substantial 435 

mitigation potential (Smith et al., 2008). The DAYCENT model was used to simulate SOC 436 

sequestration potential under different N management and mitigation options applied at two 437 

rice sites in Bangladesh. In this study, all model parameters, except for the plant growth, were 438 

set to default values based on previous literature (Cheng et al., 2013). Values of the plant 439 

growth parameter, were adjusted to 3.50 for rice while for wheat it was set to 2.00, and was 440 

fixed for all treatments. Annualized C stock changes were calculated as the difference of the 441 

SOC stock of the mitigation scenario and the SOC of the baseline scenario normalized by 442 

time period. The management treatments at the sites included application of N as mineral N, 443 

organic manure alone and in combination with N applications (Karim et al., 1995; Egashira et 444 

al., 2003; Egashira et al., 2005). There was a significant agreement between measured and 445 

simulated SOC at both sites under single nutrient management practices (Fig. 9.4a,b). A 446 

systematic underestimation of SOC was observed at Site 1 (combination of manure and N 447 

treatments), which could be attributed to a reduction of plant inputs and suggesting that less 448 

N application through manure was limiting plant production.  449 

Mitigation options considered including reduced tillage (sowing with less disturbance to the 450 

topsoil in place of tractor ploughing), a reduction in residue removal, replacement of mineral 451 

fertilizer by manure, combined application of fertilizer and manure, and an integrated 452 

scenario of inorganic fertilizer, manure addition, less residue removal and reduced tillage. All 453 

tested mitigation options increased SOC in comparison to the standard procedures, except for 454 

the scenario with lower N application, which shows a slight decrease in SOC contents (Fig. 455 
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9.4c). The integrated scenario, which combines mineral N and manure applications with 456 

reduced tillage and increased residue incorporation, appears to be the best management 457 

practice for both sites. Despite the limited availability of long term field data for tropical rice 458 

cropland, the results suggest that the DAYCENT model could be a powerful tool for 459 

exploring mitigation potentials of rice in Bangladesh. 460 

FIGURE 9.4 HERE 461 

 462 

9.4.2 Simulating carbon sequestration at farm scale 463 

Whole farm modelling attempts to simulate not only C sequestration, but also to determine 464 

the impact of C sequestration on crop and animal production, water use, fuel availability, 465 

labour and finances, so that the feedback of these factors on the potential for C sequestration 466 

can be accounted for. Whole farm modelling is particularly important in low input, close-to-467 

subsistence farming, where the potential for external inputs to the farm from inorganic 468 

fertilisers and organic resources is minimal. Such systems are often also severely limited in 469 

organic resources, with important competing uses for the organic resources that are available, 470 

such as for household energy provision, animal feeds and building. In such situations, it 471 

becomes important to model, not only the impact of the different types of organic amendment 472 

on potential C sequestration, but also to estimate the amount of material that is left over and 473 

can be added to the soil. Whole farm modelling of C sequestration attempts to account for 474 

these competing uses, and works through the impact of using resources in different ways on 475 

the quality and quantity of C inputs to the soil (Fig. 9.5). One example of this is seen in 476 

Hawassa, Ethiopia, where soils are often highly depleted in SOM, and so C sequestration is 477 

important, not only for the environment, but also to improve soil fertility and hence 478 

productivity.  479 
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FIGURE 9.5 HERE 480 

Whole farm modelling of C sequestration starts with some form of accounting; what goes 481 

where and how is it used? The nature of this depends on the input variables available to the 482 

user; when working with data provided by subsistence farmers the number of animals that 483 

must be fed is usually known, but the amount of home-produced crop fed to each animal may 484 

not be known. In this case, a simple model or look-up table of feed requirements can be used 485 

(e.g. Herrero et al., 2013). Similarly, the farmer knows what crops are grown, but the yield 486 

may not be measured as it is mainly consumed within the household. Therefore, a simple 487 

crop model is needed to estimate yield and the impact of different management decisions on 488 

crop production (e.g. Leith, 1972; Reid, 2002; Zaks et al., 2007).  489 

Having accounted for the different uses of organic resources, a SOM model is then used to 490 

determine the impact of adding differently treated organic wastes to the soil. This was 491 

simulated by Smith et al. (2014) using a variant of RothC (Coleman and Jenkinson, 1996), 492 

showing more rapid C sequestration per unit of starting material if the organic wastes are 493 

added as compost or biochar, rather than applying it fresh or as bioslurry (Fig. 9.6). After 494 

application of organic materials stops (after 20 years in this example), the C content of the 495 

soil returns to the starting position within 100 years for the fresh residue, compost and 496 

bioslurry amended soils. However, if the biochar contains a high proportion of inert organic 497 

material (currently an area of uncertainty), then the C sequestered by biochar application 498 

remains in the soil. Long-term experiments on impact of biochar on SOC dynamics and soil 499 

fertility are still limited and there are very few simulation studies on biochar and its effect on 500 

agricultural soil. Moreover, only few models have been developed to account for the effects 501 

of biochar on SOC, as discussed in Box 2. 502 

FIGURE 9.6 HERE 503 
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The real value of the whole farm model is to then use these simulations to try out different 504 

options. For example, if organic wastes are composted rather than applying them as fresh 505 

farmyard manure, how will this affect C sequestration? Identifying these positive feedbacks 506 

will provide important information for better management of subsistence farms. Similarly, 507 

identifying negative feedbacks will highlight practices that result in a reduction in the overall 508 

productivity of the farm, so helping to reduce soil degradation.  509 

[[Text Box 2]] Modelling impact of biochar application on soil organic carbon 510 

Biochar is a more stabilized form of C obtained from thermal decomposition of raw biomass. 511 

Because of its high recalcitrant nature and slow turnover rate, biochar has been identified as 512 

one of the promising option to mitigate climate change. However, modelling biochar is still in 513 

its infancy and only few models have been recently developed, or modified, to account for 514 

the effects of biochar on SOC. For example, Woolf and Lehmann (2012), and Smith et al., 515 

2014, modified the turnover rates of the labile organic C (LOC) pool in the RothC model to 516 

simulate impact of biochar on SOC sequestration. Priming effects of biochar on LOC was 517 

also included in the model by altering the decomposition rate coefficients of the resistant 518 

plant material (RPM) and decomposable plant material (DPM). Positive priming effect – i.e. 519 

the increase in mineralization of LOC – was modelled by increasing RPM and DPM 520 

decomposition rate coefficients by an amount proportional to the concentration of biochar C 521 

in the soil. Negative priming effect – i.e. an increase in the fraction of LOC transferred to the 522 

stable organo-soil-mineral fraction – was modelled as an increase in the fraction of DPM and 523 

RPM that is transferred to the humus pool (HUM) rather than mineralised to CO2.  524 

Lychuk et al. (2015) modified the Environmental policy Integrated Climate (EPIC) model by 525 

developing a set of new algorithms to determine the impact of biochar amendment on SOC 526 

sequestration, as well as other soil and crop parameters (e. g. CEC, pH , bulk density and corn 527 

yield). In the EPIC model, SOC is split into three compartments – i.e. microbial biomass, 528 
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slow humus and passive humus. To account for biochar applications, the total biochar C is 529 

allocated to the three pools as follows: 60% to the slow humus pool, 38% to the passive 530 

humus pool and only 2% to the metabolic pool.  Recently, Archontoulis et al. (2016) 531 

developed a biochar sub-model within the Agricultural Production Systems sIMulator 532 

(APSIM) model. The APSIM model divided the SOC into three pools – i.e. microbial 533 

biomass pool, humic pool and inert pool – but the fresh organic matter is accounted as a 534 

separate pool, which is also divided in three sub-pools. Archontoulis et al. (2016) introduced 535 

an additional biochar C pool to the model, which represents both labile and recalcitrant 536 

components and varies according to the type of biochar; a new double exponential decay 537 

function has been also introduced to calculate the biochar decomposition rate. Priming effects 538 

of biochar and the impact of biochar on N mineralization, soil CEC, soil pH, ammonium 539 

adsorption and desorption, soil water and bulk density have also been included in the biochar 540 

sub-model. 541 

 Despite the late developments in modelling biochar at field scale, more long-term field trials 542 

are required to better understand the relationship between soil C sequestration and biochar 543 

applications and to consequently develop, calibrate and validate soil models.  544 

 545 

 546 

9.4.3 Regional scale  547 

9.4.3.1 Potential for carbon sequestration with land use change  548 

Currently the Scottish Government has committed to increase the amount of forest by 549 

approximately 100,000 hectares per year as part of a national strategy of reducing GHG 550 

emissions by 42% by 2020 and 80% by 2050. Several models (e.g. RothC, Century) have 551 

been used to study C sequestration due to land use change. This section describes the 552 
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application of the ECOSSE model (Smith et al., 2010) to analyse the long term change in soil 553 

C stocks with afforestation of non-forest soils, aiming to identify regions that would provide 554 

most C benefit if reforested.  555 

To achieve this, high resolution (1 ha grid) land use data from the Integrated Administrative 556 

and Control System was used to identify the dominant land use; cropland, grassland, forestry 557 

and semi-natural land. Masks of productive agricultural land and current forest were applied 558 

to the land use database and this was then combined with the Scottish Soils Knowledge and 559 

Information Base (SSKIB) and long term climate input data from the UK Metrological 560 

Office. Each land use change to forestry was assumed to take place in this decade (2010’s). 561 

Suitability masks of 12 different forest compositions were applied and soil C was simulated 562 

only for areas where land use change was deemed suitable.  563 

Figure 9.7 details the change in soil C after land use conversion from crop, grass and semi-564 

natural land to native conifer forest, which is the forest type with the greatest extent of 565 

suitability in Scotland. Values outline the average annual loss in soil C for the first 20 years 566 

after planting. Across Scotland, conversion from arable and grassland to forest typically 567 

resulted in an increase in soil C where in some cases, after conversion, C accumulated up to 568 

0.69 t C ha-1 yr-1 on mineral soils. By contrast, land use change to semi-natural soils, which 569 

typically were defined as occurring on peaty soils, lead to an emission of soil C at a rate of up 570 

to 5 t C ha-1 yr-1 in the most extreme cases. While changing to forest tends to enhance C 571 

sequestration in arable and grassland soils, mass conversion may not be economically viable 572 

or sustainable as removal of productive land can increase Scotland’s reliability on food or 573 

cereal imports. While un-managed semi-natural land may be an obvious alternative, in some 574 

cases the management involved in converting these soils into a forest may lead to long term 575 

losses in soil C, despite any increases in plant C inputs. These results suggest that while, 576 

theoretically, conversion to forest maybe a long term approach to enhancing C removals, to 577 
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implement such a mitigation strategy, especially in Scotland, detailed analysis on the impacts 578 

on soil C losses in different areas should be undertaken. A similar approach was used by 579 

Pogson et al. (2016) and Richards et al. (2016) to investigate the impact on SOC of land use 580 

change across the UK. Pogson et al. (2016) developed the ELUM Software Package, which is 581 

based on the ECOSSE model, to spatially predict the net soil GHG balance of land use 582 

change to grow energy crops in the UK up to 2050. The results of the model application 583 

demonstrated that wood and perennial grass production on arable land sequestered SOC, on 584 

grassland it was neutral and on forest it emitted CO2. 585 

FIGURE 9.7 HERE 586 

9.4.3.2 Carbon losses from tropical peatlands undergoing land use change to oil palm 587 

Tropical peatlands are hugely under-researched compared to their temperate counterparts, 588 

with approaches to sampling and interpretation of peat properties still evolving to more 589 

“tropically” appropriate methods (Farmer et al., 2011). As such, there are considerable data 590 

limitations when it comes to modelling scenarios of climate and land use change on tropical 591 

peats. Some process-based models, such as RothC and ECOSSE could potentially be used to 592 

model C dynamics in tropical peats (Farmer et al., 2011), and are currently undergoing 593 

modification to be made more applicable in scenarios where the soil is accumulating C (i.e. 594 

an intact peatland scenario) before undergoing land use change. The HPMTrop (Kurinato et 595 

al., 2015) is the first process-based model to simulate long-term (decadal to millennial) C 596 

accumulation dynamics in tropical peat ecosystems. It has been applied to simulate peat 597 

accumulation in Indonesian peat swamp forests and to study the impact of land use change of 598 

these areas to oil palm plantations (Kurinato et al., 2015). The modelled average peat 599 

accumulation rates and the mean annual C losses due to conversion to oil palm were 600 

comparable to literature values; however the limited published values restricted model 601 

evaluation (Dommain et al., 2011).  602 
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Hooijer et al. (2012) measured and then modelled subsidence rates in oil palm plantations on 603 

Sumatran peatlands and an empirical model, the Tropical Peatland Plantation-Carbon 604 

Assessment Tool (TROPP-CAT), was developed from this data to provide a user friendly tool 605 

to predict soil C and CO2 emissions from drained tropical peat soils (Farmer et al., 2014). The 606 

model uses simple input values to determine the rate of subsidence, of which the oxidising 607 

proportion results in CO2 emissions. Although based on a number of assumptions, evaluation 608 

across sites of various ages showed simulations of net CO2 fluxes from the soil to be within 609 

6% of measured CO2 emissions and within the range of measurement error.  610 

In tropical peat soils, positive correlation has been observed between mean water table depth 611 

and net C loss, heterotrophic emissions and total emissions (Carlson et al., 2015) which is 612 

also observed in Northern peat soils (Abdalla et al., 2016). This relationship can be used to 613 

make predictions on emissions under future drainage scenarios. However, several studies 614 

have found discrepancies between empirical model outputs and experimental data (e.g. 615 

Allison et al., 2010; Davidson et al., 2012; Wieder et al., 2013), likely to be due to the 616 

omission of key factors, such as direct microbial control of soil C dynamics and brief soil 617 

respiration increase due to warming. To partially remedy these discrepancies, annual rhythm 618 

oscillation models have been suggested (Comeau, 2016). The novelty and advantage of a 619 

rhythm oscillation method over the traditional empirical approaches is that it automatically 620 

provides the annual flux amplitude and the peak emission time. In addition, the oscillation 621 

curves are not biased due to possible delay in microbial activity response to temperature 622 

change and other environmental variables that affect soil C dynamics. As tropical peatland 623 

research continues to develop with more datasets becoming available, an enhanced 624 

understanding of the dynamics of tropical peat formation and soil properties and 625 

characteristics will make for improved modelling of the impacts of land use change on these 626 

soils. 627 



27 
 

 628 

9.4.4 Global scale 629 

9.4.4.1 The impact of growing bioenergy crops on carbon stocks  630 

Quantitative and qualitative global datasets on the environmental effects of land use and land 631 

use change are still scarce, making climate mitigation analysis difficult. In addition, there is 632 

still a lack of information on where, at what rates, and what type of land cover is affected by 633 

land use change. In that respect, highly productive food croplands are unlikely to be used for 634 

bioenergy, but in many regions of the world a proportion of cropland is being abandoned, 635 

particularly marginal croplands, and some of this land is now being used for bioenergy. 636 

Recently, Albanito et al. (2015) used a number of harmonized geographically explicit 637 

datasets and process-based biogeochemical models to assess the global climate change 638 

mitigation potential of cropland when converted to bioenergy production (C4 grass, short 639 

rotation coppice woody crops as willow and poplar) or reforested. This study, in particular, 640 

identified areas where cropland is so productive that it may never be converted, and assess 641 

the potential of the remaining cropland to mitigate climate change by identifying which 642 

alternative land use provides the best climate benefit: C4 grass bioenergy crops, coppiced 643 

woody energy crops, or allowing forest regrowth to create a C sink.  644 

The average cropland C loss resulting from land use change was calculated as the difference 645 

in C between annual bioenergy crop yields and cropland yields aggregated over 20 years. The 646 

global forest C stocks scenario was developed using the IPCC 2006 Tier-1 method for 647 

estimating vegetation C stocks. The potential distribution and forest vegetation C stocks were 648 

obtained using the LPJmL-DGVM v3.1 model simulations. In the comparison with cropland, 649 

the C sequestration in forests was calculated by applying the factors representing percentage 650 

of final biomass C stock accumulated after 20 years (F20). F20 was estimated by integrating, 651 
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over a 100 year timescale, the IPCC default dry matter biomass annual increments in 652 

aboveground biomass in naturally regenerated forest classified below and above 20 years of 653 

age (IPCC-GPG-LULUCF, 2006). Total SOC change in reforested cropland was assumed to 654 

be equal to 53% of the initial SOC occurring in cropland (Guo and Gifford, 2002) adjusted by 655 

the percentage of biomass stock accumulated after 20 years. 656 

Across 1.11 billion hectares of global agricultural land, Albanito et al. (2015) reported that 657 

approximately 420.1 Mha would be more suitable for food crop production and therefore 658 

excluded from conversion to bioenergy crops or reforestation. Over a 20 year rotation 659 

horizon, 597.7 Mha of croplands could potentially be converted to bioenergy crops or forest, 660 

sequestering approximately 13.8 Pg C in soil (Fig. 9.8). An area of 384.9 Mha has annual 661 

extractable C of C4 bioenergy crops that is equal to or lower than cropland, but nevertheless 662 

sequesters approximately 10.3 Pg C in soil. In Asia (continental and insular) the replacements 663 

of croplands with C4 bioenergy crops have the potential to sequester 3.6 Pg C in soil across 664 

66.1 Mha of cropland. On approximately 26.3 Mha of cropland, short rotation of woody 665 

crops has greater or equal C mitigation potential to C4 bioenergy crops and forest, giving a 666 

potential sequestration in soil of 0.8 Pg C (Fig. 9.7). Finally, approximately 186.5 Mha 667 

reforestation of cropland would be the best climate mitigation option, saving a total of ~ 8.4 668 

Pg C in biomass and ~ 2.7 Pg C in the soil (Fig. 9.7).  It is important to note, however, that 669 

this study does not present these projections as a scenario of land use change where 670 

bioenergy crops or forests should replace cropland, which will depend on many other factors, 671 

not least of which is the need to produce food; rather it is to show where there could be a 672 

climate benefit if this land were to be converted. 673 

FIGURE 9.8 HERE 674 

 675 
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9.5. Political aspects and concluding remarks 676 

In 2015, the world defined and committed itself to striving toward the UN Sustainable 677 

Development Goals (UN SDG) (UNDP, 2015), in which the historic Paris Climate 678 

Agreement (PCA) was signed under the UN Framework Convention on Climate Change 679 

(UNFCCC, 2015), and was also the UN International Year of Soils (UN, 2015).  680 

The agreement of the UN SDG and the PCA could not have set up a better legacy for the UN 681 

International Year of Soils, since soils are recognised as being critical to the delivery of both. 682 

A number of the UN SDG are underpinned by healthy soil C stocks, including the following 683 

Sustainable Development Goals (SDGs), among them: SDG 1 – no poverty – in developing 684 

countries, a large proportion of the population rely on the land for their livelihoods, and 685 

productive land relies on healthy soils (Smith et al., 2013), SDG 2 -  zero hunger – soils 686 

underpin the production of safe and nutritious food (Keestra et al., 2016), SDG 13 – climate 687 

action – soil C sequestration offers climate mitigation (Smith, 2016) and makes ecosystems 688 

more resilient to future climate change (Smith et al., 2016a), and SDG 15 – life on land – 689 

healthy ecosystems are founded on healthy soils (Smith et al., 2015).  690 

By linking international, national and local policies, and action frameworks to the PCA, 691 

governments can develop more comprehensive and robust approaches to climate change, 692 

food security, soil protection, sustainable land management, water management and energy 693 

generation (Chan et al., 2015; Casado-Asensio et al., 2016). However, there is often a 694 

difference in objectives between practitioners at various levels and policy makers, 695 

particularly in the agricultural sector, with respect to priorities for resource and land 696 

management (Casado-Asensio et al., 2016; Bodansky et al., 2014). This disconnect requires 697 

robust institutional support to encourage inclusivity in decision making, increase the 698 

dissemination of policies, offer financial assistance and access to markets and provide 699 

insurance for climate risks. These actions will require collaborative action from both the 700 
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public and the private sector. In this context it is crucial to explore the relationship between 701 

farmers’ attitudes and their farming practices, as well as informing decision makers regarding 702 

the social impacts of their decisions. This aspect is discussed in more details in Box 3. 703 

[[Begin Text Box 3]] Translating scientific soil carbon models to the farming community 704 

Scientific models predicting the effects of farming practice and land use change on C 705 

emissions and sequestration provide a very valuable tool that can guide policy-makers, 706 

industry and individual farmers to make changes for a more sustainable agricultural sector. 707 

Greenhouse gas calculator tools such as the Cool Farm Tool, C-Plan and CCAFS-Mitigation 708 

option tool are currently being used as a platform to translate scientific models to the daily 709 

farming practice (Hillier et al., 2011; Whittaker et al., 2013). These tools aim to encourage 710 

farmers to change their behaviour by raising awareness of the negative outcomes of their 711 

farming practice on GHG emissions and help them to take informed decisions on alternatives. 712 

This approach has for a long time been a popular strategy in promoting pro-environmental 713 

behaviour in various contexts (Stern, 2011). Although it has been proven to be effective in 714 

increasing people’s knowledge, it has minimal effects changing actual behaviour (Abrahamse 715 

et al., 2005; Gardner and Stern, 2002; Stern, 2011). To effectively motivate farmers to take 716 

up mitigation measures, it is recommended that information provision from GHG calculators 717 

be combined with other psychological interventions. To effectively create a bespoke 718 

intervention aiming at a specific psychological factor, it is recommended to first assess which 719 

factors underlie the willingness of farmers to take up mitigation measures. Psychological 720 

models, such as the Theory of Planned Behaviour (Ajzen, 1991), can provide a good starting 721 

point to assess the significance of a number of factors such as attitude towards pro-722 

environmental measures, social pressure, group pressure or self-identity (Van Dijk et al., 723 

2015, 2016). For example, if the model indicates that peer pressure is related to the 724 

motivation of farmers to take up mitigation measures, benchmarking would be an effective 725 
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intervention. This can be done by organising plural workshops in which farmers collectively 726 

run a GHG calculator for their farms and receive information on how their outcomes compare 727 

to their peers. Benchmarking has been proven to be effective at increasing farmers’ intentions 728 

and uptake of pro-environmental measures (Lokhorst et al., 2010). However, combining 729 

different interventions can further increase the uptake of measures. For example, combining 730 

benchmarking with public commitment making, in which farmers commit themselves in front 731 

of fellow participants of the workshop to certain measures, has been demonstrated to even 732 

further increase the willingness and uptake of these measures (Lokhorst et al., 2010). In 733 

conclusion, GHG calculator tools are very valuable tools to translate scientific carbon models 734 

to the farming community by providing information on how to decrease GHG emissions, but 735 

to successfully establish a change in the daily practice it is recommended to combine these 736 

tools with other psychological interventions and communication strategies.  737 

 738 

 739 

Given the role of soils, and soil C, in delivering the UN SDGs and the PCA, the accurate 740 

modelling of soil C stocks has never been more important. There is a pressing need to 741 

develop, test and challenge our soil C models to meet the challenges facing humanity in the 742 

21st Century. Whatever type of models are used to meet future challenges, it is important that 743 

they continue to be tested using appropriate data, and that they are used in regions and for 744 

land uses where they have been developed and validated. As new uses of land are developed, 745 

models should continue to be validated and modified if necessary, so that they are still 746 

appropriate. In addition, in many situations the type of model used, will be dependent on the 747 

input data available. Models such as DAYCENT, ECOSSE and the Cool Farm Tool are ideal 748 

for assessing soil C sequestration under future climate and land use, but if insufficient data is 749 

available, then less data intensive models (e. g. RothC, statistical techniques) should be used.  750 
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It is also important that the best data available are readily accessible, whether this is 751 

decomposition pot experiments, long-term experiments, soil maps, or satellite data. The 752 

development of the technologies of remote sensing and precision farming will provide high 753 

resolution data and advances in informatics will enable their use in developing higher 754 

resolution and more detailed process-based models. It is extremely important that 755 

experimentalists/data curators are involved in the modelling process, as modellers need to 756 

know if analytical methods have changed over time or between different counties, what 757 

quality control has been used on the data, and how missing data has been addressed.   758 

With good quality data and timely modifications, soil C models will be able to help meet the 759 

challenges of the future. 760 

[[Text Box 4]] Take home message 761 

• Soil models are essential tools to understand the effects of land and climate change, 762 

from field to global scale.  763 

• Soil models are crucial tools to up-scale and interpolate point/site/field information to 764 

larger scales in a quantitative way. 765 

• In order to provide meaningful and useful soil C predictions, uncertainties in model 766 

outputs should always be quantified.  767 

• Whatever type of models are used to meet future challenges, it is important that they 768 

continue to be tested using appropriate data. 769 

• As new uses of land are developed, models should continue to be validated and 770 

modified if necessary, so that they are still appropriate.  771 

• It is extremely important that experimentalists/data curators are involved in the 772 

modelling process, as modellers need to know if analytical methods have changed 773 
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over time, what quality control has been used on the data and how missing data has 774 

been addressed. 775 

• Calibrated and validated models can be used by experimentalists to provide 776 

information on data acquisition and to develop new research hypothesis. 777 

• GHG calculator tools are very valuable tools to translate scientific carbon models to 778 

the farming community by providing information on how to decrease GHG emissions, 779 

but to successfully establish a change in the daily practice it is recommended to 780 

combine these tools with other psychological interventions and communication 781 

strategies. 782 

• By linking international, national and local policies, and action frameworks to the 783 

Paris Climate Agreement, governments can develop more comprehensive and robust 784 

approaches to climate change, food security, soil protection, sustainable land 785 

management, water management and energy generation.  786 

• There is often a difference in objectives between practitioners at various levels and 787 

policy makers with respect to priorities for resource and land management. This 788 

disconnect requires robust institutional support to encourage inclusivity in decision 789 

making. 790 

 791 
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FIGURE CAPTIONS 1125 

Figure 1: Structure of the RothC carbon sequestration model. Key: DPM is Decomposable 1126 

Plant Material; RPM is Resistant Plant Material; BIO is Microbial Biomass; HUM is 1127 

Humified Organic Matter; and IOM is Inert Organic Matter, and α, β and (1-α-β) are the 1128 

proportions of BIO, HUM and CO2 produced on aerobic decomposition. Adapted from 1129 

Bradbury et al. (1993) and Coleman and Jenkinson (2014). 1130 

Figure 2: Structure of the two-component DNDC model with six sub-models: soil climate, 1131 

crop growth, decomposition, denitrification, nitrification and fermentation. Adapted from Li, 1132 

(2000). 1133 
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Figure 3: Measured (dark circle) and simulated (light circle) NEE for (a) the grassland and 1134 

(b) arable fields during the experimental period (grassland experimental period: 2003-2006; 1135 

arable experimental period: 2003-2007). Adapted from Abdalla et al. (2013). 1136 

Figure 4: Simulated (line) and measured (points) SOC values at 20 cm depth over 20 years 1137 

under different treatment for the period of 1978-2015 and 1988-2008 for site 1 (Fig. 1a) and 1138 

site 2 (Fig. 1b) respectively. Fig. 1c indicates modelled annualised SOC stock changes under 1139 

different mitigation scenarios of two test sites for the period of 1988-2008. [MN-Mineral N, 1140 

FYMN-Farmyard manure + mineral N, CD-Cowdung, CDN-Cowdung+mineral N, RSD20-1141 

20% residue return, RT-Reduced tillage, BMP-Best management practice, RSD20+RT+less 1142 

N+CD]. 1143 

Figure 5: Whole farm modelling, accounting for the feedback between soil organic matter on 1144 

crop and animal production, water use, fuel availability, labour and finances. 1145 

Figure 6: Rate of carbon sequestration for application continued over 20 years of differently 1146 

treated organic residues derived from 1 t ha-1 y-1 of carbon in fresh residue. Adapted from 1147 

Smith et al. (2014). 1148 

Figure 7: Change in soil C (t C ha-1 y-1) after conversion from grass, crop or semi – natural 1149 

land to Forestry. Values represent the average annual change in soil C for the first 20 years 1150 

after conversion. 1151 

Figure 8: Potential contribution (%) of soil C sequestration to the total C savings occurring 1152 

from the conversion of rainfed and irrigated high-input croplands to C4 bioenergy crops, short 1153 

rotation coppice wood land (SRCW) and forests.  1154 
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