CIFOR-ICRAF aborda desafios e oportunidades locais ao mesmo tempo em que oferece soluções para problemas globais para florestas, paisagens, pessoas e o planeta.

Fornecemos evidências e soluções acionáveis ​​para transformer a forma como a terra é usada e como os alimentos são produzidos: conservando e restaurando ecossistemas, respondendo ao clima global, desnutrição, biodiversidade e crises de desertificação. Em suma, melhorar a vida das pessoas.

O CIFOR-ICRAF publica mais de 750 publicações todos os anos sobre agrossilvicultura, florestas e mudanças climáticas, restauração de paisagens, direitos, política florestal e muito mais – em vários idiomas..

CIFOR-ICRAF aborda desafios e oportunidades locais ao mesmo tempo em que oferece soluções para problemas globais para florestas, paisagens, pessoas e o planeta.

Fornecemos evidências e soluções acionáveis ​​para transformer a forma como a terra é usada e como os alimentos são produzidos: conservando e restaurando ecossistemas, respondendo ao clima global, desnutrição, biodiversidade e crises de desertificação. Em suma, melhorar a vida das pessoas.

CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Assessing Sumatran Peat Vulnerability to Fire under Various Condition of ENSO Phases Using Machine Learning Approaches

Exportar a citação

In recent decades, catastrophic wildfire episodes within the Sumatran peatland have contributed to a large amount of greenhouse gas emissions. The El-Nino Southern Oscillation (ENSO) modulates the occurrence of fires in Indonesia through prolonged hydrological drought. Thus, assessing peatland vulnerability to fires and understanding the underlying drivers are essential to developing adaptation and mitigation strategies for peatland. Here, we quantify the vulnerability of Sumatran peat to fires under various ENSO conditions (i.e., El-Nino, La-Nina, and Normal phases) using correlative modelling approaches. This study used climatic (i.e., annual precipitation, SPI, and KBDI), biophysical (i.e., below-ground biomass, elevation, slope, and NBR), and proxies to anthropogenic disturbance variables (i.e., access to road, access to forests, access to cities, human modification, and human population) to assess fire vulnerability within Sumatran peatlands. We created an ensemble model based on various machine learning approaches (i.e., random forest, support vector machine, maximum entropy, and boosted regression tree). We found that the ensemble model performed better compared to a single algorithm for depicting fire vulnerability within Sumatran peatlands. The NBR highly contributed to the vulnerability of peatland to fire in Sumatra in all ENSO phases, followed by the anthropogenic variables. We found that the high to very-high peat vulnerability to fire increases during El-Nino conditions with variations in its spatial patterns occurring under different ENSO phases. This study provides spatially explicit information to support the management of peat fires, which will be particularly useful for identifying peatland restoration priorities based on peatland vulnerability to fire maps. Our findings highlight Riau’s peatland as being the area most prone to fires area on Sumatra Island. Therefore, the groundwater level within this area should be intensively monitored to prevent peatland fires. In addition, conserving intact forests within peatland through the moratorium strategy and restoring the degraded peatland ecosystem through canal blocking is also crucial to coping with global climate change.
Download:

DOI:
https://doi.org/10.3390/f13060828
Pontuação Altmetric:
Dimensões Contagem de citações:

Publicações relacionadas