CIFOR-ICRAF aborda desafios e oportunidades locais ao mesmo tempo em que oferece soluções para problemas globais para florestas, paisagens, pessoas e o planeta.

Fornecemos evidências e soluções acionáveis ​​para transformer a forma como a terra é usada e como os alimentos são produzidos: conservando e restaurando ecossistemas, respondendo ao clima global, desnutrição, biodiversidade e crises de desertificação. Em suma, melhorar a vida das pessoas.

Découvrez les évènements passés et à venir dans le monde entier et en ligne, qu’ils soient organisés par le CIFOR-ICRAF ou auxquels participent nos chercheurs.

O CIFOR-ICRAF publica mais de 750 publicações todos os anos sobre agrossilvicultura, florestas e mudanças climáticas, restauração de paisagens, direitos, política florestal e muito mais – em vários idiomas..

CIFOR-ICRAF aborda desafios e oportunidades locais ao mesmo tempo em que oferece soluções para problemas globais para florestas, paisagens, pessoas e o planeta.

Fornecemos evidências e soluções acionáveis ​​para transformer a forma como a terra é usada e como os alimentos são produzidos: conservando e restaurando ecossistemas, respondendo ao clima global, desnutrição, biodiversidade e crises de desertificação. Em suma, melhorar a vida das pessoas.

CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Detection of subtle deforestation due to logging using satellite remote sensing in wet and dry savanna woodlands of Southern Africa

Exportar a citação

Tropical deforestation through logging activities poses a direct threat to biodiversity. However, the detection of logging has remained a challenge. Based on study sites in Zimbabwe and Zambia, we tested whether the Normalized Difference Vegetation Index (NDVI) and the Coefficient of Variation in NDVI (CVNDVI) derived from high and medium spatial resolution satellite data could be used to detect logging in dry and wet miombo woodlands. Separately, we integrated NDVI and CVNDVI in logistic regression to test whether each can be used to successfully predict logging in the study sites. We tested whether the spatial resolution of satellite data has an effect in detection of logging using NDVI and CVNDVI derived from Landsat 8 and Worldview-2. Based on the ROC curves, we concluded that remotely sensed data could provide an effective predictive tool for detecting logging. However, in wet miombo woodlands the predictive power of remotely sensed data is weak.
Download:

DOI:
https://doi.org/10.1080/10106049.2016.1161074
Pontuação Altmetric:
Dimensões Contagem de citações:

Publicações relacionadas