CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Comparative gastrointestinal organ lengths among Amazonian primates (Primates: Platyrrhini)

Export citation

The morphological features of the gastrointestinal tract (GIT) in mammals reflect a species' food niche breadth and dietary adaptations. For many wild mammals, the relationship between the structure of the GIT and diet is still poorly understood, for example, the GIT for frugivorous primates is usually classified as unspecialized and homogeneous. Here, we compare the GIT structure of 13 primate species from the three families of extant platyrrhines (Atelidae, Pitheciidae, and Cebidae) in Amazonia, and discuss possible evolutionary adaptations to different diets and trophic niches. We measured the length of the esophagus, stomach, small intestine, large intestine, cecum, colon, and rectum of the digestive tracts of 289 primate specimens. We determined the allometric relationships of the different tubular organs with the total length of the GIT as a proxy of specimen body size. Allometric parameters were used to establish the quotients of differentiation of every organ for each primate specimen. There was a high differentiation in structure of the digestive organs among genera. Alouatta specimens clearly separated from the other genera based on dissimilarities in gastric, colonic, and rectal quotients, likely linked to the fermentation of plant contents. In contrast, all cebines (Sapajus, Cebus, and Saimiri) and Cacajao species had similar small intestine quotients, which is expected due to their high rates of animal matter consumed. We show that diverse adaptations in digestive structure exist among frugivorous primates, which in turn reflect different dietary patterns within this group that may enable the geographic coexistence of different primate species.
Download:

DOI:
https://doi.org/10.1002/ajpa.24751
Altmetric score:
Dimensions Citation Count:

Related publications