Agricultural catchments in the tropics often generate high concentrations of suspended sediments following the conversion of natural ecosystems. The eroded fine particles are generally enriched with carbon (TC) and nutrients (TN and TP) originating from the topsoil of agricultural land. Sediment-associated TC, TN and TP are an important loss to the terrestrial ecosystem and tightly connected to an increase in riverine particulate TC and nutrient export. Soil nutrient depletion can limit crop growth and yields, whereas an excess of nutrients in streams can cause eutrophication in freshwater systems. Streams in East Africa, with widespread land conversion from forests to agriculture, are expected to receive high loads of sediment-associated TC, TN and TP. In this study, we assess the effect of land use on particulate TC, TN and TP concentrations. Suspended sediments (time-integrated, manual-event-based and automatic-event-based sediment samples) were analysed for TC, TN and TP concentrations collected at the outlet of a natural montane forest (35.9), a tea-tree plantation (33.3) and a smallholder agriculture (27.2 km2) catchment in western Kenya during a wet sampling period in 2018 and a drier sampling period in 2019. Particulate TC, TN and TP concentrations were up to 3-fold higher (p
Download:
DOI:
https://doi.org/10.5194/soil-7-53-2021
Altmetric score:
Dimensions Citation Count:
Publication year
2021
Authors
Stenfert Kroese, J.; Quinton, J.N.; Jacobs, S.R.; Breuer, L.; Rufino, M.C.
Language
English
Keywords
catchment hydrology, agricultural land, soil properties, soil organic carbon, sedimentation, macronutrients, small scale farming
Geographic
Kenya