CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Land-use change and Biogeochemical controls of soil CO2, N2O and CH4 fluxes in Cameroonian forest landscapes

Export citation

Deforestation and land-use change are accelerating in the Congo Basin and elsewhere in the tropics affecting the soil-atmosphere exchange of greenhouse gases (GHG). There is a lack of data from Central Africa. We quantified fluxes of CO2, CH4, and N2O at the soil-atmosphere interface in a secondary forest, a cocoa agroforest, and an unfertilized cropland. Soil respiration was highest in the secondary forest (15.37 ± 3.42 Mg C ha−1 y−1), intermediate in the cacao agroforest (12.26 ± 2.91 Mg C ha−1 y−1) and the lowest in the unfertilized cropland (8.74 ± 2.62 Mg C ha−1 y−1). Likewise, N2O fluxes were highest in the secondary forest (2.17 ± 0.20 kg N ha−1 y−1), intermediate in the cacao agroforest (1.40 ± 0.08 kg N ha−1 y−1) and lowest in the unfertilized cropland (1.04 ± 0.15 kg N ha−1 y−1). Soils were a sink for atmospheric CH4 and sink strength was high in the secondary forest (−3.60 ± 1.83 kg CH4 ha−1 y−1) and cacao agroforest (−3.61 ± 2.09 kg CH4 ha−1 y−1) and low in the unfertilized cropland (−1.9 ± 1.59 kg CH4 ha−1 y−1). Variation in soil water content rather than temperature was the dominant driver of seasonal variations of the fluxes at all study sites and N availability affected both N2O and CH4 fluxes. Our results suggest that tropical land-use change is decreasing soil respiration, decreasing the strength of the soil CH4 sink and decreasing N2O emissions, in landscapes that do not practice agriculture with chemical fertilization.
Download:

DOI:
https://doi.org/10.1080/1943815X.2020.1779092
Altmetric score:
Dimensions Citation Count:

Related publications