CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Habitat Suitability and Population Structure of an Endemic Palm Species (Pinanga arinasae) in Bali, Indonesia

Export citation

The conservation of individual species should be based on knowledge of habitat requirements and the population demographic status. It is impractical to assess each of thousands of species in ecoregion, but rare or narrowly distributed species may constitute important conservation targets. Knowledge of habitat requirements is quite important to design conservation areas for these species and to promote long-term persistence (both through in-situ or ex-situ conservation). Additionally, knowledge of population structure and demography is needed to assess viability of populations. In this study, I investigate habitat suitability and population size structure for a newly identified endemic palm species (Pinanga arinasae.) The palm has an important role in the indigenous human community. Plots with palms and adjacent areas with no palms were sampled to characterize key habitat variables. Habitat suitability was modeled using machine learning techniques of Artificial Neural Network (ANN) and Random Forest (RF). Population size structure was characterized by counting and measuring the height of individuals found in plots. The ANN variables that best explain occurrence were litter depth, elevation, canopy openness and slope. The RF variables that best explained the data were elevation, litter depth, slope, and aspect. Both the Artificial Neural Network (ANN) and Random Forest (RF) are robust models that can be used to predict the occurrence of Pinanga arinasae. The population size structure showed that there are many seedlings, but juvenile and mature individuals were found in small numbers.
Download:
    Publication year

    2018

    Authors

    Yudaputra, A.

    Language

    English

    Keywords

    habitat, conservation, biodiversity

    Geographic

    Indonesia

Related publications