CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Floristics and biogeography of vegetation in seasonally dry tropical regions

Export citation

To provide an inter-continental overview of the floristics and biogeography of drought-adapted tropical vegetation formations, we compiled a dataset of inventory plots in South America (n=93), Africa (n=84), and Asia (n=92) from savannas (subject to fire), seasonally dry tropical forests (not generally subject to fire), and moist forests (no fire). We analysed floristic similarity across vegetation formations within and between continents. Our dataset strongly suggests that different formations tend to be strongly clustered floristically by continent, and that among continents, superficially similar vegetation formations (e.g. savannas) are floristically highly dissimilar. Neotropical moist forest, savanna and seasonally dry tropical forest are floristically distinct, but elsewhere there is no clear floristic division of savanna and seasonally dry tropical forest, though moist and dry formations are separate. We suggest that because of their propensity to burn, many formations termed "dry forest" in Africa and Asia are best considered as savannas. The floristic differentiation of similar vegetation formations from different continents suggests that cross-continental generalisations of the ecology, biology and conservation of savannas and seasonally dry tropical forests may be difficult.
Download:

DOI:
https://doi.org/10.1505/146554815815834859
Altmetric score:
Dimensions Citation Count:

Related publications