CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Impact of Drought on Maize Yield and Exploration of In-Situ Maize Crop Genetic Resources for Drought Tolerance

Export citation

To meet an ever global population's food demand, crop yields must be sustained and increased. Drought, which is getting harsher as a result of global warming, is largely impeding the agricultural productivity. Maize is widely used as food and animal feed in many regions of the world, but its yields are largely effected by drought and heat stress. Historical data on climate change predicts that drought and heat stress becoming major threat for maize cultivation in coming years, which will have huge impact on food security of the world especially in Africa and Asia. Thus there is an immense necessary to develop drought tolerant and climate resilient maize to feed the predicted population of the world. Availability and accessibility of crop genetic resources plays a huge role in development of drought-tolerant maize cultivars. A huge genetic resources of maize, including its landraces and crop wild relatives (CWR) have been reported naturally and many of them have stored in National and International gene banks globally. Conventional breeding methods have been tremendously increased maize yields, but these methods frequently fall short of achieving the demand for improved drought stress resistance. In this article, we have briefly discussed about impact of climate variability on crop production, maize yield losses due to drought, drought tolerance in maize landraces and CWR, and origin and evolution of Mexican landraces. This information may help in utilization of these potential resources in various pre-breeding programs.

DOI:
https://doi.org/10.20944/preprints202212.0210.v1
Altmetric score:
Dimensions Citation Count:

Related publications