CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Genetic variation in wood mechanical properties of Calycophyllum spruseanum at an early age in the Peruvian Amazon

Export citation

Calycophyllum spruceanum (Benth.) Hook. f. ex Shum. is an important timber species of the Peruvian Amazon Basin. Due to overexploitation in natural populations, users are turning to young trees of potentially lower quality. Therefore, variation in juvenile wood properties should be investigated to determine whether wood quality can be maintained or, if necessary, improved by breeding. A provenance/progeny test was established to evaluate genetic variation in growth and wood properties of young trees, the strength of their genetic control, as well as their interrelationships both at the genetic and phenotypic levels. This paper presents results obtained for ultimate crushing strength (L), the static compliance coefficient (S11) in longitudinal compression, the dynamic s11 in the longitudinal direction (determined by ultrasound), and air-dry density at 39 months. Results indicate that the mechanical properties of juvenile wood of this species are adequate for structural uses. There was significant variation in all wood properties due to families within provenances, and in all but dynamic s11 due to provenances. Families accounted for a larger percentage of the total phenotypic variance than provenances. Heritability estimates were higher for L and static s11 than for dynamic s11 and density. Genetic correlations indicate that selecting trees with denser wood and/or faster growth would have a positive effect on some mechanical properties. A non-destructive ultrasonic method appeared suitable for estimating juvenile wood strength and stiffness of this species.
    Publication year

    2022

    Authors

    Sotelo Montes C; Beaulieu J; Hernández R E

    Language

    English

    Keywords

    calycophyllum spruseanum, environment, family size, genetic correlation, heritability, juvenile wood, provenance

    Geographic

    Peru

Related publications