CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Root distributions partially explain 15N uptake patterns in Gliricidia and Peltophorum hedgerow intercropping systems

Export citation

The relative distributions of tree and crop roots in agroforestry associations may affect the degree of complementarity which can be achieved in their capture of below ground resources. Trees which root more deeply than crops may intercept leaching nitrogen and thus improve nitrogen use efficiency. This hypothesis was tested by injection of small doses of (15NH4)2SO4 at 21.8 atom% 15N at different soil depths within established hedgerow intercropping systems on an Ultisol in Lampung, Indonesia. In the top 10 cm of soil in intercrops of maize and trees, root length density (Lrv) of maize was greater than that of Gliricidia sepium trees, which had greater Lrv in this topsoil layer than Peltophorum dasyrrachis trees. Peltophorum trees had a greater proportion of their roots in deeper soil layers than Gliricidia or maize. These vertical root distributions were related to the pattern of recovery of 15N placed at different soil depths; more 15N was recovered by maize and Gliricidia from placements at 5 cm depth than from placements at 45 or 65 cm depth. Peltophorum recovered similar amounts of 15N from placements at each of these depths, and hence had a deeper N uptake distribution than Gliricidiaor maize. Differences in tree Lrv across the cropping alley were comparatively small, and there was no significant difference (P

DOI:
https://doi.org/10.1023/A:1011961409353
Altmetric score:
Dimensions Citation Count:

Related publications