CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Low nitrogen use efficiency and high nitrate leaching in a highly fertilized Coffea arabica-Inga densiflora agroforestry system: a 15N labeled fertilizer study

Export citation

In intensive cultivation of coffee (Coffea arabica L.), large N fertilizer inputs are thought to increase nitrate (NO3 -) water contamination and greenhouse gas emissions. This study was carried out (1) to evaluate the nitrogen use efficiency of a highly fertilized C. arabica-Inga densiflora agroforestry system on an Andosol and (2) to determine the control mechanisms of N fluxes and losses. Nitrogen pools and fluxes were monitored for one cropping season in a coffee plantation (density 4,722 plants ha-1, height 2.1 m), shaded by regularly pruned leguminous trees (density 278 trees ha-1; height 8 m), in the Central Valley of Costa Rica. The fate of N fertilizer (250 kg N ha-1 year-1) was traced by adding 15N-urea at 1.61 kg 15N ha-1. The labeled urea was rapidly nitrified or immobilized in soil organic matter with 20.8 % recovered in organic form at the end of the cropping season in the top 2 m of the soil. There was high net N mineralization and nitrification in the top soil (˜200 kg N ha-1 year-1 in 0-10 cm) and up to 257 kg NO3 --N ha-1 were found in the top 2 m of the soil. Only 25.2 % (63 kg N ha-1) of the applied fertilizer (15N recovery) was taken up by the two plant species (13.5 % in the coffee plants, 9.6 % in the shade trees and 2.1 % in the litter). Total N export in the coffee fruit harvest accounted for 110 kg N ha-1 but only 17.6 kg N ha-1 came from the applied fertilizer (7 % of 15N recovery). During this year of high coffee production, the coffee plant acquired most of its N from mineralized soil N rather than from N fertilizer. High fertilization resulted in a low rate of N2 fixation by I. densiflora, estimated at 22.7 kg N ha-1 year-1 (Ndfa of 16.1 %). As a result of high water drainage (1,745 mm for a total rainfall of 2,678 mm), the main fate of N fertilizer was NO3 - leaching (33-55 % of 15N recovery). The annual NO3 --N leaching at a depth of 120 cm was 157.2 kg N ha-1 year-1(including 82.8 from applied N) and the N2O-N emission was 5.8 kg N ha-1 year-1. These results clearly showed that the system was N saturated, leading to low use efficiency of the N fertilizer and significant losses of N, principally through NO3 - leaching. This study provided an insight on how to reduce the negative environmental im

DOI:
https://doi.org/10.1007/s10705-013-9571-z
Altmetric score:
Dimensions Citation Count:

Related publications