CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Long-term impact of a gliricidia-maize intercropping system on carbon sequestration in southern Malawi

Export citation

Tree/crop systems under agroforestry practice are capable of sequestering carbon (C) in the standing biomass and soil. Although studies have been conducted to understand soil organic C increases in some agroforestry technologies, little is known about C sequestered in simultaneous tree/crop intercropping systems. The main objective of this study was to determine the effect of agroforestry practice on C sequestration and CO2-C efflux in a gliricidia-maize intercropping system. The experiment was conducted at an experimental site located at the Makoka Agricultural Research Station, in Malawi. The studies involved two field plots, 7-year (MZ21) and 10-year (MZ12), two production systems (sole-maize and gliricidia-maize simultaneous intercropping systems). A 7-year-old grass fallow (Grass-F) was also included. Gliricidia prunings were incorporated at each time of tree pruning in the gliricidia-maize. The amount of organic C recycled varied from 0.8 to 4.8 Mg C ha1 in gliricidia-maize and from 0.4 to 1.0 Mg C ha1 in sole-maize. In sole-maize, net decreases of soil carbon of 6 Mg C ha1 at MZ12 and 7 Mg C ha1 at MZ21 in the topsoil (0–20 cm) relative to the initial soil C were observed. After 10 years of continuous application of tree prunings C was sequestered in the topsoil (0–20 cm) in gliricidia-maize was 1.6 times more than in sole-maize. A total of 123–149 Mg C ha1 were sequestered in the soil (0–200 cm depth), through root turnover and pruning application in the gliricidia-maize system. Carbon dioxide evolution varied from 10 to 28 kg ha1 day1 in sole-maize and 23 to 83 kg ha1 day1 in gliricidia-maize. We concluded that gliricidia-maize intercropping system could sequester more C in the soil than sole-maize.

DOI:
https://doi.org/10.1016/j.agee.2006.05.011
Altmetric score:
Dimensions Citation Count:

Related publications