CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

General linear models

Export citation

In this chapter we take up the problems occasioned by the failure of the rank condition (for the matrix of explanatory variables). This problem arises as a matter of course in analysis of variance (or covariance) models where some of the variables are classificatory. In this case, we are led to the construction of “dummy” variables representing the classificatory schemes. Since all such classificatory schemes are exhaustive, it is not surprising that the “dummy” variables are linearly dependent and, thus, the rank condition for the data matrix fails.
    Publication year

    2022

    Authors

    Allan E F; Stern R D; Coe, R.

    Language

    English

    Keywords

    data analysis, models, statistical analysis, statistical data, socioeconomic

Related publications