CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Estimasi Karbon Tersimpan di Lahan-lahan Pertanian di DAS Konto, Jawa Timur. RACSA (Rapid Carbon Stock Appraisal)

Export citation

The carbon (C) sequestration of vegetation can be rapidly estimated by measuring the C stored in aboveground biomass (trees and understorey), necromass (dead standing trees, stump, fallen branch, leaf, twig, flowers and fruits), and soil organic matter and roots. The total C stored in all components of aboveground and belowground biomass and necromass, technically called as C stock. The total C stock varies among land cover depending on land management i.e. plant species composition, age and population density. Consequently, changing in land use management will affect total C stock at the whole landscape.Analysis was done using local land use maps of 1990 and 2000 of Kali Konto watershed (Malang regency, East Java), the result showed that forest area reduced and followed by increasing total area of „belukar (bush fallow) and plantation. The common land cover found were agroforestry coffee based system, plantation (Hutan Tanaman Industri) such as pine (Pinus mercusii), mahogany (Swietenia mahogany) and 'damar' (Agatissp.) which potentially able to store a big amount of C for longer time. Unfortunately the availability of land cover (agricultural) maps and its potential as C sequestered in Kalikonto is very limited. Various versions of land use maps are available locally with various land use classification lead to confusing rather than clarification creating difficulties on detecting land cover change. More accurate estimation of areas per land cover in Kali Konto watershed is needed for calculating C stored at watershed level. This research was done to answer four research question such as:1. How much carbon stored (C stock) in aboveground biomass of each land cover in Kali Konto watershed2. How much the C stocks that are actually present on each cover, averaged over the lifecycle of each land cover (time-averaged of carbon stock)3. How big forest areas in 1990 were converted into agricultural land4. How much C stock lost after forest converted into agricultural land

Related publications