CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Genetic diversity in Napier grass (Pennisetum purpureum) cultivars: implications for breeding and conservation

Export citation

Napier grass is an important forage crop for dairy production in the tropics; as such, its existing genetic diversity needs to be assessed for conservation. The current study assessed the genetic variation of Napier grass collections from selected regions in Eastern Africa and the International Livestock Research Institute Forage Germplasm-Ethiopia. The diversity of 281 cultivars was investigated using five selective amplified fragment length polymorphism (AFLP) markers and classical population genetic parameters analysed using various software. The number of bands generated was 216 with fragments per primer set ranging from 50 to 115. Mean percentage polymorphic loci was 63.40. Genetic diversity coefficients based on Nei's genetic diversity ranged from 0.0783 to 0.2142 and Shannon's information index ranged from 0.1293 to 0.3445. The Fst value obtained was moderately significant (Fst = 0.1688). Neighbour-joining analysis gave two distinct clusters which did not reflect geographical locations. Analysis of molecular variance showed all variance components to be highly significant (P < 0.001), indicating more variation within (91 %) than between populations (9 %). Results suggested moderate genetic differentiation among Napier grass populations sampled, which could imply a high germplasm exchange within the region. The AFLP markers used in this study efficiently discriminate among cultivars and could be useful in identification and germplasm conservation.

DOI:
https://doi.org/10.1093/aobpla/plt022
Altmetric score:
Dimensions Citation Count:

Related publications