CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Analysis of the impact of domestication of Warburgia ugandensis (Sprague) on its genetic diversity based on amplified fragment length polymorphism

Export citation

Warburgia ugandensis Sprague (Canellaceae) occurs in East and Central Africa and is an important multipurpose tree species. Over-exploitation of natural forests for medicinal purposes and clearance for farming threaten the species survival. Cultivation of the tree species would ensure sustainable medicinal source and its conservation. However, on-farm genetic diversity of the species is currently unknown. The genetic diversity of the on-farm W. ugandensis populations and their proximate natural populations were analyzed using the amplified fragment length polymorphism (AFLP). Four primer combinations produced a total of 223 polymorphic bands. Both the natural and on-farm populations had high genetic diversity ranging from H = 0.2892 to H = 0.1278. Principal co-ordinates analysis and dendrogram separated the ten populations into two major groups corresponding to Kenyan and Tanzanian populations, respectively. Ugandan populations were shared between the two major groups; this is probably because Uganda is believed to be the centre of diversity for W. ugandensis. Close genetic relationships between the on-farm and their proximate natural population were revealed. Analysis of molecular variance (AMOVA) revealed that a total of 54% AFLP variation resided within populations with 46% reside among populations. The high genetic diversity of W. ugandensis on-farm populations could be useful in germplasm collection and conservation strategies.

DOI:
https://doi.org/10.5897/AJB2016.15282
Altmetric score:
Dimensions Citation Count:

Related publications