CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Deforestation risk in the Peruvian Amazon basin

Export citation

The prevention of tropical forest deforestation is essential for mitigating climate change. We tested the machine learning algorithm Maxent to predict deforestation across the Peruvian Amazon. We used official annual 2001–2019 deforestation data to develop a predictive model and to test the model’s accuracy using near-real-time forest loss data for 2020. Distance from agricultural land and distance from roads were the predictor variables that contributed most to the final model, indicating that a narrower set of variables contribute nearly 80% of the information necessary for prediction at scale. The permutation importance indicating variable information not present in the other variables was also highest for distance from agricultural land and distance from roads, at 40.5% and 14.3%, respectively. The predictive model registered 73.2% of the 2020 early alerts in a high or very high risk category; less than 1% of forest cover in national protected areas were registered as very high risk, but buffer zones were far more vulnerable, with 15% of forest cover being in this category. To our knowledge, this is the first study to use 19 years of annual data for deforestation risk. The open-source machine learning method could be applied to other forest regions, at scale, to improve strategies for reducing future deforestation.

DOI:
https://doi.org/10.1017/S0376892921000291
Altmetric score:
Dimensions Citation Count:

Related publications