CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Paddy Rice Phenological Mapping throughout 30-Years Satellite Images in the Honghe Hani Rice Terraces

Export citation

The Honghe Hani Rice Terraces represent the coexistence between natural and cultural systems. Despite being listed as a World Heritage Site in 2013, certain natural and anthropogenic factors have changed land use/land cover, which has led to a reduction in the size of the paddy rice area. It is difficult to accurately assess these changes due to the lack of historical maps of paddy rice croplands with fine spatial resolution. Therefore, we integrated a random forest classifier and phenological information to improve mapping accuracy and stability. We then mapped the historical distribution of land use/land cover in the Honghe Hani Rice Terraces from 1989–1991 to 2019–2021 using the Google Earth Engine. Finally, we analyzed the driving forces of land use types in the Honghe Hani Rice Terraces. We found that: (1) forests, shrubs or grasslands, and other croplands could be discriminated from paddy rice during the flooding and transplanting period, and water bodies and buildings could also be discriminated from paddy rice during the growing and harvesting period. (2) Inputting phenological feature data improved mapping accuracy and stability compared with single phenological periods. (3) In the past thirty years, 10.651%, 8.810%, and 5.711% of paddy rice were respectively converted to forests, shrubs or grasslands, and other croplands in the Honghe Hani Rice Terraces. (4) Lower agricultural profits and drought led to problems in identifying the driving mechanisms behind paddy rice distribution changes. This study demonstrates that phenological information can improve the mapping accuracy of rice terraces. It also provides evidence for the change in the size of the rice terrace area and associated driving forces in Southwest China.

DOI:
https://doi.org/10.3390/rs15092398
Altmetric score:
Dimensions Citation Count:

Related publications