CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Effect of shading by baobab (Adansonia digitata) and néré (Parkia biglobosa) on yields of millet (Pennisetum glaucum) and taro (Colocasia esculenta) in parkland systems in Burkina Faso, West Africa

Export citation

An experiment was conducted in Nobéré, Burkina Faso to assess the effect of shade of two indigenous fruit trees, Adansonia digitata (Baobab) and Parkia biglobosa (Néré), on a shade-tolerant crop called taro (Colocasia esculenta) in comparison with millet (Pennisetum glaucum) a shade-intolerant crop. Photosynthetically active radiation (PAR) and performance of crops under trees and in the open field were assessed during three cropping seasons. Millet performed better under baobab (806.1 ± 121.48 kg ha−1) compared to the control plot (595.8 ± 83.43 kg ha−1) and néré (320.2 ± 59.91 kg ha−1). In contrast, the yield of taro was higher under néré (4124.0 ± 469.05 kg ha−1) compared to the control plot (2336.9 ± 617.04 kg ha−1) and baobab (2738.3 ± 595.61 kg ha−1). There was a strong relationship between the amount of PAR intercepted by trees and crop yields under trees. As PAR decreased the yield of millet decreased whereas the yield of taro increased. Hence, it was concluded that parkland productivity could be enhanced by cropping taro under néré where light reduction was 83, 56 and 18% in zones A, B and C, respectively. An efficient association of baobab with crops could be the production of taro in zone A and millet in zones B and C where PAR reduction was 62, 38 and 15%, respectively.

DOI:
https://doi.org/10.1007/s10457-011-9405-4
Altmetric score:
Dimensions Citation Count:

Related publications