CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Replication Data for Using metabarcoding to ask if easily collected soil and leaf-litter samples can be used as a general biodiversity indicator

The targeted sequencing of taxonomically informative genetic markers, sometimes known as metabarcoding, allows eukaryote biodiversity to be measured rapidly, cheaply, comprehensively, repeatedly, and verifiably. Metabarcoding helps to remove the taxonomic impediment, which refers to the great logistical difficulties of describing and identifying species, and thus promises to improve our ability to detect and respond to changes in the natural environment. Now, sampling has become a rate-limiting step in biodiversity measurement, and in an effort to reduce turnaround time, we use arthropod samples from southern China and Vietnam to ask whether soil, leaf litter, and aboveground samples provide similar ecological information. A soil or leaf-litter sample can be collected in minutes, whereas an aboveground sample, such as from Malaise traps or canopy fogging, can require days to set up and run, during which time they are subject to theft, damage, and deliberate contamination. Here we show that while the taxonomic compositions of soil and leaf-litter samples are very different from aboveground samples, both types of samples provide similar ecological information, in terms of ranking sites by species richness and differentiating sites by beta diversity. In fact, leaf-litter samples appear to be as or more powerful than Malaise-trap and canopy-fogging samples at detecting habitat differences. We propose that metabarcoded leaf-litter and soil samples be widely tested as a candidate method for rapid environmental monitoring in terrestrial ecosystems.

Dataset's Files

Disclaimer.pdf
MD5: f876174a62c66ad334a0109b2a23c529
Authors

Chenxue Yang

Publication date

2015-10-28

DOI

10.34725/DVN/SOENYI

Other datasets you might be interested in