CIFOR-ICRAF berfokus pada tantangan-tantangan dan peluang lokal dalam memberikan solusi global untuk hutan, bentang alam, masyarakat, dan Bumi kita

Kami menyediakan bukti-bukti serta solusi untuk mentransformasikan bagaimana lahan dimanfaatkan dan makanan diproduksi: melindungi dan memperbaiki ekosistem, merespons iklim global, malnutrisi, keanekaragaman hayati dan krisis disertifikasi. Ringkasnya, kami berupaya untuk mendukung kehidupan yang lebih baik.

CIFOR-ICRAF menerbitkan lebih dari 750 publikasi setiap tahunnya mengenai agroforestri, hutan dan perubahan iklim, restorasi bentang alam, pemenuhan hak-hak, kebijakan hutan dan masih banyak lagi – juga tersedia dalam berbagai bahasa..

CIFOR-ICRAF berfokus pada tantangan-tantangan dan peluang lokal dalam memberikan solusi global untuk hutan, bentang alam, masyarakat, dan Bumi kita

Kami menyediakan bukti-bukti serta solusi untuk mentransformasikan bagaimana lahan dimanfaatkan dan makanan diproduksi: melindungi dan memperbaiki ekosistem, merespons iklim global, malnutrisi, keanekaragaman hayati dan krisis disertifikasi. Ringkasnya, kami berupaya untuk mendukung kehidupan yang lebih baik.

CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Selecting the right statistical model for analysis of insect count data by using information theoretic measures

Ekspor kutipan

Researchers and regulatory agencies often make statistical inferences from insect count data using modelling approaches that assume homogeneous variance. Such models do not allow for formal appraisal of variability which in its different forms is the subject of interest in ecology. Therefore, the objectives of this paper were to (i) compare models suitable for handling variance heterogeneity and (ii) select optimal models to ensure valid statistical inferences from insect count data. The log-normal, standard Poisson, Poisson corrected for overdispersion, zero-inflated Poisson, the negative binomial distribution and zero-inflated negative binomial models were compared using six count datasets on foliage-dwelling insects and five families of soil-dwelling insects. Akaike's and Schwarz Bayesian information criteria were used for comparing the various models. Over 50% of the counts were zeros even in locally abundant species such as Ootheca bennigseni Weise, Mesoplatys ochroptera Stål and Diaecoderus spp. The Poisson model after correction for overdispersion and the standard negative binomial distribution model provided better description of the probability distribution of seven out of the 11 insects than the log-normal, standard Poisson, zero-inflated Poisson or zero-inflated negative binomial models. It is concluded that excess zeros and variance heterogeneity are common data phenomena in insect counts. If not properly modelled, these properties can invalidate the normal distribution assumptions resulting in biased estimation of ecological effects and jeopardizing the integrity of the scientific inferences. Therefore, it is recommended that statistical models appropriate for handling these data properties be selected using objective criteria to ensure efficient statistical inference.

DOI:
https://doi.org/10.1079/BER2006449
Skor altmetrik:
Jumlah Kutipan Dimensi:

    Tahun publikasi

    2006

    Penulis

    Sileshi G W

    Bahasa

    English

    Kata kunci

    ecology, inflation, information classification, models

    Geografis

    Malawi

Publikasi terkait