CIFOR-ICRAF s’attaque aux défis et aux opportunités locales tout en apportant des solutions aux problèmes mondiaux concernant les forêts, les paysages, les populations et la planète.

Nous fournissons des preuves et des solutions concrètes pour transformer l’utilisation des terres et la production alimentaire : conserver et restaurer les écosystèmes, répondre aux crises mondiales du climat, de la malnutrition, de la biodiversité et de la désertification. En bref, nous améliorons la vie des populations.

CIFOR-ICRAF publie chaque année plus de 750 publications sur l’agroforesterie, les forêts et le changement climatique, la restauration des paysages, les droits, la politique forestière et bien d’autres sujets encore, et ce dans plusieurs langues. .

CIFOR-ICRAF s’attaque aux défis et aux opportunités locales tout en apportant des solutions aux problèmes mondiaux concernant les forêts, les paysages, les populations et la planète.

Nous fournissons des preuves et des solutions concrètes pour transformer l’utilisation des terres et la production alimentaire : conserver et restaurer les écosystèmes, répondre aux crises mondiales du climat, de la malnutrition, de la biodiversité et de la désertification. En bref, nous améliorons la vie des populations.

CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Canopy cover estimation in miombo woodlands of Zambia: Comparison of Landsat 8 OLI versus RapidEye imagery using parametric, nonparametric, and semiparametric methods

Exporter la citation

Acquiring forest resources information for tropical developing countries is challenging due to financial and logistical constraints. Yet, this information is critical for enhancing management capability and engaging in international initiatives such as Reducing Emissions from Deforestation and forest Degradation (REDD +). The use of multi-source inventories (i.e., remote-sensing, field, and other data) in integrated models has shown increasing promise for accurately estimating forest attributes at lower costs. In this study, we compared the use of Landsat 8 OLI versus RapidEye satellite imagery in four modeling approaches (generalized linear model (GLM), generalized additive model (GAM), k-Nearest Neighbors (k-NN), Random Forests), with and without auxiliary information (e.g., soils characteristics, distance to roads, etc.) to estimate percent canopy cover by pixel for an ~ 1,000,000 ha area in Zambia. We derived plot-level canopy cover as the dependent variable, using field-measured data collected according to current National Forest Inventory (NFI) protocol. Using cross-validation statistics, Landsat 8 OLI exhibited better results than RapidEye across modeling approaches likely due to the additional short-wave infrared bands which consistently improved model performance (average root mean squared prediction error = 10.1% versus 11.0%). The GAM approach was more precise, though more challenging to fit. For both remote sensing data sources and all modeling approaches, other auxiliary information improved the model; soil variables were commonly selected for inclusion using a Genetic Algorithm. Using a binomial GAM with Landsat 8 OLI and soil variables, and by applying the current FAO forest/non-forest definition (i.e., canopy cover > 10% for a 0.5 ha area), we estimated the total forest area as 758,100 ha (95% bootstrapped confidence interval of ± 3,953 ha). Overall, our research indicates that sufficiently accurate forest area estimates for Zambia can be obtained using canopy cover GAM models that incorporate NFI data and freely-available remote sensing imagery and soil information.

DOI:
https://doi.org/10.1016/j.rse.2016.03.028
Score Altmetric:
Dimensions Nombre de citations:

Publications connexes