CIFOR-ICRAF s’attaque aux défis et aux opportunités locales tout en apportant des solutions aux problèmes mondiaux concernant les forêts, les paysages, les populations et la planète.

Nous fournissons des preuves et des solutions concrètes pour transformer l’utilisation des terres et la production alimentaire : conserver et restaurer les écosystèmes, répondre aux crises mondiales du climat, de la malnutrition, de la biodiversité et de la désertification. En bref, nous améliorons la vie des populations.

Découvrez les évènements passés et à venir dans le monde entier et en ligne, qu’ils soient organisés par le CIFOR-ICRAF ou auxquels participent nos chercheurs.

CIFOR-ICRAF publie chaque année plus de 750 publications sur l’agroforesterie, les forêts et le changement climatique, la restauration des paysages, les droits, la politique forestière et bien d’autres sujets encore, et ce dans plusieurs langues. .

CIFOR-ICRAF s’attaque aux défis et aux opportunités locales tout en apportant des solutions aux problèmes mondiaux concernant les forêts, les paysages, les populations et la planète.

Nous fournissons des preuves et des solutions concrètes pour transformer l’utilisation des terres et la production alimentaire : conserver et restaurer les écosystèmes, répondre aux crises mondiales du climat, de la malnutrition, de la biodiversité et de la désertification. En bref, nous améliorons la vie des populations.

CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Mapping tree species diversity of a tropical montane forest by unsupervised clustering of airbone imaging spectroscopy data

Exporter la citation

With the ongoing global biodiversity loss, approaches to measuring and monitoring biodiversity are necessary for effective conservation planning, especially in tropical forests. Remote sensing has much potential for biodiversity mapping, and high spatial resolution imaging spectroscopy (IS) allows for direct prediction of tree species diversity based on spectral reflectance. The objective of this study was to test an approach for mapping tree species alpha diversity that takes advantage of an unsupervised object-based clustering. Tree species diversity of a tropical montane forest in the Taita Hills, Kenya, was mapped based on spectral variation of high spatial resolution IS data. Airborne IS data and species data from 31 field plots were collected in the study area. Species diversity measures were obtained from the IS data by clustering spectrally similar image segments representing tree crowns. In order to do this, the image was segmented to objects that represented tree crowns. Three measures of species diversity were calculated based on the field data and on the clustering results, and the relationships were statistically analyzed. According to the results, the approach succeeded well in revealing tree species diversity patterns. Especially, tree species richness was well predicted (RMSE = 3 species; r2 = 0.50) directly based on the clustering results. The optimal number of clusters was found to be close to the estimated number of tree species in the forest. Minimum tree size was an important determinant of the relationships, because only part of the trees are visible to the airborne sensor in the multi-layered closed canopy forest. In general, the object-based approach proved to be a viable alternative to a pixel-based clustering. The approach takes advantage of the capability of IS to detect spectral differences among tree crowns, but without the need for spectral training data, which is expensive to collect. With further development, the approach could be applied also for estimating beta diversity.

DOI:
https://doi.org/10.1016/j.ecolind.2015.12.026
Score Altmetric:
Dimensions Nombre de citations:

    Année de publication

    2016

    Auteurs

    Schäfer E; Heiskanen, J.; Heikinheimo V; Pellikka P

    Langue

    English

    Mots clés

    trees, species, biodiversity, tropical forests, mountains, analytical methods, eerial photography, spectroscopy

    Géographique

    Kenya

Publications connexes