An understanding of wood physical properties and the interrelationships that govern them is required for efficient utilization of timber tree species. Guazuma crinita is a fast-growing timber tree of agroforestry systems in the Peruvian Amazon. The aim of this study was to assess variation in wood physical properties within the G. crinita stem. Wood samples were obtained from the base, middle and top of the stem of 12 randomly selected eight-year-old trees from six provenances in order to determine wood moisture content, density, specific gravity, radial, tangential and volumetric shrinkage and the coefficient of anisotropy. Pearson correlations between physical properties were also determined. The highest basic density was 459 kg/m3 from Tournavista provenance. Mean basic density and specific gravity were 430 kg/m3 and 0.45 respectively. There was statistically significant variation (p 0.05), due to stem level within the trees. The moderate values of density and anisotropy coefficient (1.56) suggest that G. crinita is a stable wood; these are important advantages in terms of costs of the processes of transport and transformation. Given the variation found in the limited tree samples of this study, we recommend further analysis with larger samples from different provenances and planting zones.
DOI:
https://doi.org/10.21829/myb.2017.2311534
Puntuación Altmetric:
Dimensiones Recuento de citas: