CIFOR-ICRAF aborda desafios e oportunidades locais ao mesmo tempo em que oferece soluções para problemas globais para florestas, paisagens, pessoas e o planeta.

Fornecemos evidências e soluções acionáveis ​​para transformer a forma como a terra é usada e como os alimentos são produzidos: conservando e restaurando ecossistemas, respondendo ao clima global, desnutrição, biodiversidade e crises de desertificação. Em suma, melhorar a vida das pessoas.

O CIFOR-ICRAF publica mais de 750 publicações todos os anos sobre agrossilvicultura, florestas e mudanças climáticas, restauração de paisagens, direitos, política florestal e muito mais – em vários idiomas..

CIFOR-ICRAF aborda desafios e oportunidades locais ao mesmo tempo em que oferece soluções para problemas globais para florestas, paisagens, pessoas e o planeta.

Fornecemos evidências e soluções acionáveis ​​para transformer a forma como a terra é usada e como os alimentos são produzidos: conservando e restaurando ecossistemas, respondendo ao clima global, desnutrição, biodiversidade e crises de desertificação. Em suma, melhorar a vida das pessoas.

CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Optimal tree architecture for high-yield yellowhorn (Xanthoceras sorbifolium) management

Exportar a citação

Tree architectural attributes demonstrate a significant association with fruit yield. Yellowhorn is the future bioenergy tree in China; however, the species suffers from high reproductive energy and exceedingly low reproductive output. To optimize yellowhorn management and pinpoint priority trees featuring optimal architecture, we employed machine learning modeling to develop high fruit yielding predictive models using five yield indicators (dependent variables: FrW, SeW, ShW, FrW, and SeN) and five tree characteristics (independent variables: CA, TH, DGL, HLC, and MBN) of yellowhorn. Results showed that trees characterized by a substantial canopy area (>1.70 m2) and a large diameter at ground level (>3.71 cm) have been found to yield a higher fruit production. However, increased tree height does not invariably correlate with an elevated yield. Effective selection of high-yielding individuals can be accomplished by restricting tree height within the range of 192–232.4 cm. This approach emphasizes the importance of integrating considerations of tree architecture into forestry management practices. Such integration can bolster productivity, thereby contributing to both the sustainability and economic viability of yellowhorn forests.

DOI:
https://doi.org/10.1002/fes3.500
Pontuação Altmetric:
Dimensões Contagem de citações:

Publicações relacionadas