CIFOR-ICRAF aborda desafios e oportunidades locais ao mesmo tempo em que oferece soluções para problemas globais para florestas, paisagens, pessoas e o planeta.

Fornecemos evidências e soluções acionáveis ​​para transformer a forma como a terra é usada e como os alimentos são produzidos: conservando e restaurando ecossistemas, respondendo ao clima global, desnutrição, biodiversidade e crises de desertificação. Em suma, melhorar a vida das pessoas.

O CIFOR-ICRAF publica mais de 750 publicações todos os anos sobre agrossilvicultura, florestas e mudanças climáticas, restauração de paisagens, direitos, política florestal e muito mais – em vários idiomas..

CIFOR-ICRAF aborda desafios e oportunidades locais ao mesmo tempo em que oferece soluções para problemas globais para florestas, paisagens, pessoas e o planeta.

Fornecemos evidências e soluções acionáveis ​​para transformer a forma como a terra é usada e como os alimentos são produzidos: conservando e restaurando ecossistemas, respondendo ao clima global, desnutrição, biodiversidade e crises de desertificação. Em suma, melhorar a vida das pessoas.

CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Evaluating consistency across multiple NeoSpectra (compact Fourier transform near-infrared) spectrometers for estimating common soil properties

Exportar a citação

Rapid and cost-effective techniques for soil analysis are essential to guide sustainable land management and production agriculture. This study aimed at evaluating the performance and consistency of portable handheld Fourier-transform near-infrared spectrometers and the NeoSpectra scanners in estimating 12 common soil physical and chemical properties including pH; organic carbon (OC); inorganic carbon (IC); total nitrogen (TN); cation exchange capacity (CEC); clay, silt, and sand fractions; and exchangeable potassium (K), phosphorus (P), calcium (Ca), and magnesium (Mg). A diverse set of samples (n = 600) were retrieved from a national-scale soil archive of the Kellogg Soil Survey Laboratory of USDA-NRCS and scanned with five NeoSpectra scanners. Predictive models for the soil properties were developed using partial least squares regression (PLSR), Cubist, and memory-based learning (MBL). Cubist outperformed PLSR and MBL, with the best prediction performance for clay, OC, and CEC (R2 > 0.7), followed by IC, sand, silt, and Mg (R2 > 0.6), and then pH, TN, and Ca (R2 > 0.5). K and P were predicted somewhat poorly with R2 of 0.48 and 0.22. All five NeoSpectra yielded comparable near-infrared (NIR) spectral data and the PLSR models for the soil properties (in terms of model regression coefficients). However, the consistency assessment showed that the model performance was significantly decreased when the training and testing spectra were from different NeoSpectra scanners. It is concluded that NeoSpectra scanners could be rapid and cost effective for estimating certain soil properties, and calibration transfer should be considered for applications where multiple devices are involved and high estimation accuracy from NIR data is required.

DOI:
https://doi.org/10.1002/saj2.20678
Pontuação Altmetric:
Dimensões Contagem de citações:

Publicações relacionadas