Explore eventos futuros e passados ​​em todo o mundo e online, sejam hospedados pelo CIFOR-ICRAF ou com a participação de nossos pesquisadores.

Découvrez les évènements passés et à venir dans le monde entier et en ligne, qu’ils soient organisés par le CIFOR-ICRAF ou auxquels participent nos chercheurs.

Jelajahi acara-acara mendatang dan yang telah lalu di lintas global dan daring, baik itu diselenggarakan oleh CIFOR-ICRAF atau dihadiri para peneliti kami.

CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.

CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests, landscapes, people and the planet.

We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short, improving people’s lives.

Can intensification reduce emission intensity of biofuel through optimized fertilizer use? Theory and the case of oil palm in Indonesia

Closing yield gaps through higher fertilizer use increases direct greenhouse gas emissions but shares the burden over a larger production volume. Net greenhouse gas (GHG) footprints per unit product under agricultural intensification vary depending on the context, scale and accounting method. Life cycle analysis of footprints includes attributable emissions due to (i) land conversion (‘fixed cost’); (ii) external inputs used (‘variable cost’); (iii) crop production (‘agronomic efficiency’); and (iv) postharvest transport and processing (‘proportional’ cost). The interplay between fixed and variable costs results in a nuanced opportunity for intermediate levels of intensification to minimize footprints. The fertilizer level that minimizes the footprint may differ from the economic optimum. The optimization problem can be solved algebraically for quadratic crop fertilizer response equations. We applied this theory to data of palm oil production and fertilizer use from 23 plantations across the Indonesian production range. The current EU threshold requiring at least 35% emission saving for biofuel use can never be achieved by palm oil if produced: (i) on peat soils, or (ii) on mineral soils where the C debt due to conversion is larger than 20 Mg C ha-1, if the footprint is calculated using an emission ratio of N2O–N/N fertilizer of 4%. At current fertilizer price levels in Indonesia, the economically optimized N fertilizer rate is 344–394 kg N ha-1, while the reported mean N fertilizer rate is 141 kg N ha-1 yr-1 and rates of 74–277 kg N ha-1 would minimize footprints, for a N2O–N/N fertilizer ratio of 4–1%, respectively. At a C debt of 30 Mg C ha1, these values are 200–310 kg N ha-1. Sustainable weighting of ecology and economics would require a higher fertilizer/yield price ratio, depending on C debt. Increasing production by higher fertilizer use from current 67% to 80% of attainable yields would not decrease footprints in current production conditions.

Dataset's Files

0.Disclaimer.pdf
MD5: 46ac594e688ae98d0b0828ceb42fbdcc
Authors

van Noordwijk, Meine ; Khasanah, Nimatul ; Dewi, Sonya

Publication date

14 Mar 2017

DOI

10.34725/DVN/3DYKJ7

Other datasets you might be interested in